• Title/Summary/Keyword: Adrenal medulla

Search Result 87, Processing Time 0.028 seconds

D-Amphetamine Causes Dual Actions on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Geon-Han;Na, Gwang-Moon;Min, Seon-Young;Seo, Yoo-Seok;Park, Chan-Won;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • The present study was designed to examine the effect of d-amphetamine on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Damphetamine $(10{\sim}100{\mu}M$), when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced the CA secretory responses evoked by ACh ($5.32{\times}10^{-3}$ M), excess $K^+$ ($5.6{\times}10^{-2}$ M, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic $N_n-receptor$ agonist) and McN-A-343 ($10^{-4}$ M, a selective $M_1-muscarinic$ agonist) only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, d-amphetamine ($30{\mu}M$) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase only for the first period (4 min). However, in the presence of high concentration ($500{\mu}M$), d-amphetamine rather inhibited the CA secretory responses evoked by the above all of secretagogues. Collectively, these experimental results suggest that d-amphetamine at low concentrations enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization, but at high concentration it rather inhibits them. It seems that d-amphetamine has dual effects as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that these actions of d-amphetamine are probably relevant to the $Ca^{2+}$ mobilization through the dihydropyridine L-type $Ca^{2+}$ cha$N_n$els located on the rat adrenomedullary chromaffin cell membrane and the release of $Ca^{2+}$ from the cytoplasmic store.

Inhibitory Effects of Self-Fermented Pine Needle Extract on Catecholamine Release in the Rat Adrenal Medulla

  • Choi, Mee-Sung;Seo, Young-Hwan;Cheong, Hyeon-Sook;Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.36-48
    • /
    • 2013
  • The aim of the present study was to investigate the effects of several fractions obtained from methylene chloride ($CH_2Cl_2$) extract of self-fermented pine needle (SFPNE) on the acetylcholine (ACh)-evoked CA release from the isolated perfused model of the rat adrenal medulla and to establish the mechanism of the most active fraction (Fr.)-induced inhibitory action on the CA release. We obtained 6 fractions from $CH_2Cl_2$ extract of self-fermented pine needle. For the ACh (5.32 mM)-evoked CA release, the following rank order of inhibitory potency was obtained: Fr.4-5 > Fr.8-11 ${\gg}$ Fr.3 > Fr.6 = Fr.7 > Fr.1-2. Fr. 4 - 5 (60 ${\mu}g/mL$) perfused into an adrenal vein for 90 min produced relatively time-dependent inhibition of the CA secretory responses to ACh (5.32 mM), DMPP (100 ${\mu}M$), McN-A-343 (100 ${\mu}M$) and high $K^+$ (56 mM). Fr. 4 - 5 itself did not affect basal CA secretion. Also, in the presence of Fr. 4 - 5 (60 ${\mu}g/mL$), the CA secretory responses to angiotensin II (AngII, 0.1 ${\mu}M$), veratridine (50 ${\mu}M$), Bay-K-8644 (10 ${\mu}M$), and cyclopiazonic acid (10 ${\mu}M$) were significantly reduced, respectively. In the simultaneous presence of Fr. 4 - 5 (60 ${\mu}g/mL$) and L-NAME (30 ${\mu}M$), the inhibitory responses of Fr. 4 - 5 on the CA secretion evoked by ACh, DMPP, high $K^+$, AngII, Bay-K-8644 and veratridine were considerably recovered to the extent of the corresponding control secretion compared with that of Fr. 4 - 5-treatment alone. The level of NO released from adrenal medulla after the treatment of Fr. 4 - 5 (60 ${\mu}g/mL$) was greatly elevated compared with the basal level. Taken together, these results demonstrate that Fr. 4 - 5 inhibits the CA secretion from the isolated perfused rat adrenal medulla evoked by stimulation of cholinergic receptors as well as by direct membrane-depolarization. It seems that this inhibitory effect of Fr. 4 - 5 is mediated by blocking the influx of $Ca^{2+}$ and $Na^+$ into the adrenomedullary chromaffin cells as well as by inhibition of $Ca^{2+}$ release from the cytoplasmic calcium store, which is evoked at least partly through the increased NO production due to the activation of NO synthase. Based on these results, it is also thought that Fr. 4 - 5 isolated from $CH_2Cl_2$ extract of pine needle may contain beneficial antihypertensive components to prevent or treat hypertension.

Influence of $\omega$-Conotoxin GVIA, Nifedipine and Cilnidipine on Catecholamine Release in the Rat Adrenal Medulla

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • The present study was designed to establish comparatively the inhibitory effects of cilnidipine(CNP), nifedipine(NIF), and $\omega$-conotoxin GVIA(CTX) on the release of CA evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. CNP(3 ${\mu}M$), NIF(3 ${\mu}M$), and CTX(3 ${\mu}M$) perfused into an adrenal vein for 60 min produced greatly inhibition in CA secretory responses evoked by ACh($5.32{\times}10^{-3}M$), DMPP($10^{-4}M$ for 2 min), McN-A-343($10^{-4}M$ for 2 min), high $K^+(5.6{\times}10^{-2}M)$, Bay-K-8644($10^{-5}M$), and cyclopiazonic acid($10^{-5}M$), respectively. For the CA release evoked by ACh and Bay-K-8644, the following rank order of potency was obtained: CNP>NIF>CTX. The rank order for the CA release evoked by McN-A-343 and cyclopiazonic acid was CNP>NIF>CTX. Also, the rank orders for high $K^+$ and for DMPP were NIF>CTX>CNP and NIF>CNP>CTX, respectively. Taken together, these results demonstrate that all voltage-dependent $Ca^{2+}$ channels(VDCCs) blockers of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA inhibit greatly the CA release evoked by stimulation of cholinergic(both nicotinic and muscarinic) receptors and the membrane depolarization without affecting the basal release from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effects of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA are mediated by the blockade of both L- and N-type, L-type only, and N-type only VDCCs located on the rat adrenomedullary chromaffin cells, respectively, which are relevant to $Ca^{2+}$ mobilization. It is also suggested that N-type VDCCs play an important role in the rat adrenomedullary CA secretion, in addition to L-type VDCCs.

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.

Green Tea Extract (CUMS6335) Inhibits Catecholamine Release in the Perfused Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • v.13 no.1
    • /
    • pp.68-77
    • /
    • 2007
  • The aim of the present study was to examine the effects of green tea extract (CUMS6335) on the release of CA evoked by cholinergic stimulation and direct membrane-depolarization in the perfused model of the adrenal gland isolated from the spontaneously hypertensive rats (SHRs), and to establish the mechanism of action. Furthermore, it was also to test whether there is species difference between animals, and between CUMS6335 and EGCG, one of biologically the most powerful catechin compounds found in green tea. CUMS6335 $(100\;{\mu}g/ml)$, when perfused into an adrenal vein for 60 min, time-dependently inhibited the CA secretory responses evoked by ACh (5.32mM), high $K^+$(56 mM), DMPP $(100\;{\mu}M)$, and McN-A-343 $(100\;{\mu}M)$ from the isolated perfused adrenal glands of SHRs. However, CUMS6335 itself did fail to affect basal catecholamine output. Also, in adrenal glands loaded with CUMS6335 $(100\;{\mu}g/ml)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ were also inhibited in a relatively time-dependent fashion. However, in the Presence of EGCG $(8.0\;{\mu}g/ml)$ for 60 min, the CA secretory response evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not affected except for last period. Collectively, these results indicate that CUMS6335 inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by direct membrane-depolarization from the perfused adrenal gland of the SHR. It seems that this inhibitory effect of CUMS6335 is exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself. It seems likely that there is much difference in mode of the CA-releasing action between CUMS6335 and EGCG.

Influence of Bradykinin on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Kim, Il-Hwan;Na, Gwang-Moon;Kang, Moo-Jin;Kim, Ok-Min;Choi, Deok-Ho;Ki, Young-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.231-238
    • /
    • 2003
  • The present study was undertaken to investigate the effect of bradykinin on secretion of catecholamines (CA) evoked by stimulation of cholinergic receptors and membrane depolarization from the isolated perfused model of the rat adrenal glands, and to elucidate its mechanism of action. Bradykinin $(3{\times}10^{-8}M)$ alone produced a weak secretory response of the CA. however, the perfusion with bradykinin $(3{\times}10^{-8}M)$ into an adrenal vein of the rat adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}M)$, excess $K^+$ ($5.6{\times}10^{-2}M$, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic agonist) and McN-A-343 ($10^{-4}$ M, a selective M1-muscarinic agonist). Moreover, bradykinin ($3{\times}10^{-8}$ M) in to an adrenal vein for 90 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels. However, in the presence of $(N-Methyl-D-Phe^7)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_2$-bradykinin receptor, bradykinin no longer enhanced the CA secretion evoked by Ach and high potassium whereas the pretreatment with Lys-$(des-Arg^9,\;Leu^9)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_1$-bradykinin receptor did fail to affect them. Furthermore, the perfusion with bradykinin $(3{\times}10^{-6}M)$ into an adrenal vein of the rabbit adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by excess $K^+$ $(5.6{\times}10^{-2}M)$. Collectively, these experimental results suggest that bradykinin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization through the activation of $B_2$-bradykinin receptors, not through $B_1$-bradykinin receptors. This facilitatory effect of bradykinin seems to be associated to the increased $Ca^{2+}$ influx through the activation of the dihydropyridine L-type $Ca^{2+}$ channels.

Regulatory Role of Adrenal Medulla and Renin-Angiotensin System in Sympathetic Neurotransmission in Spontaneously Hypertensive and Normotensive Rats (선천성 고혈압 흰쥐와 정상혈압 흰쥐의 교감신경성 신경전달에 미치는 부신수질 및 Renin-Angiotensin계의 역할)

  • Kim, In-Kyeom;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 1994
  • To assess the role of adrenal medulla and renin-angiotensin system in the regulation of sympathetic neurotransmission, the pressor response to PNS was evaluated in pithed SHR and normotensive WKY or SDR with or without adrenal demedullation and/or enalapril pretreatment. Three weeks after adrenal demedullation, MAP and the heart rate of demedullated rats were similar to their corresponding sham-operated groups. The pressor response to PNS was frequency-dependent, and blocked by prazosin. In contrast to the normotensive rats, in SHR, the pressor response to PNS was attenuated in demedullated rats as compared with sham-operated rats. However, the attenuation of PNS-induced pressor responses in demedullated SHR was not observed in enalapril-treated SHR. The adrenal demedullation in SHR did not affect the plasma and aortic catecholamine contents in spite of the decreased catecholamine contents of adrenal gland, nor ACE activity in aortic strips. But, in WKY rats, the aortic catecholamines, especially epinephrine, contents as well as ACE activity were increased by adrenal demedullation. These results suggest that the facilitatory role of adrenal medulla in sympathetic neurotransmission depends upon the activation of renin-angiotensin system, and that the compensatory regulation of renin-angiotensin system takes place in normotensive rats but not in SHR.

  • PDF

R-(-)-TNPA, a Dopaminergic $D_2$ Receptor Agonist, Inhibits Catecholamine Release from the Rat Adrenal Medulla

  • Hong, Soon-Pyo;Seo, Hong-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.273-282
    • /
    • 2006
  • The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic $D_2$ receptor and S(-)-raclopride, a selective antagonist of dopaminergic $D_2$ receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA $(10{\sim}100\;{\mu}M)$ perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA $(30\;{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$, an activator of L-type $Ca^2+$ channels and cyclopiazonic acid $(10\;{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were also inhibited. However, S(-)-raclopride $(1{\sim}10\;{\mu}M)$, given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride $(3.0\;{\mu}M)$ in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNP A $(30\;{\mu}M)$ and S(-)-raclopride $(3.0\;{\mu}M)$, the inhibitory responses of R(-)-TNPA $(30\;{\mu}M)$ on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic $D_2$ receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic $D_2$ receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic $D_2$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Ko, Woo-Seok;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.147-160
    • /
    • 2008
  • The present study was designed to examine effects of polyphenolic compounds isolated from red wine (PCRW) on the release of catecholamines (CA) from the isolated perfused model of the rat adrenal medulla, and to clarify its mechanism of action. PCRW (20${\sim}$180 ${\mu}$g/mL), given into an adrenal vein for 90 min, caused inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}$M) in dose- and time-dependent fashion. PCRW itself did not affect basal CA secretion (data not shown). Following the perfusion of PCRW (60 ${\mu}$g/mL), the secretory responses of CA evoked by Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}$M), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}$M) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}$M) were also markedly blocked, respectively. Interestingly, in the simultaneous presence of PCRW (60 ${\mu}$g/mL) and L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}$M), the inhibitory responses of PCRW on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid were recovered to considerable level of the corresponding control release compared with those effects of PCRW-treatment alone. Practically, the amount of NO released from adrenal medulla after loading of PCRW (180 ${\mu}$g/mL) was significantly increased in comparison to the corresponding basal released level. Collectively, these results obtained here demonstrate that PCRW inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal gland of the normotensive rats. It seems that this inhibitory effect of PCRW is mediated by blocking the influx of both ions through $Na^+$ and $Ca^+{2$} channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are due at least partly to the increased NO production through the activation of nitric oxide synthase. Based on these data, it is also thought that PCRW may be beneficial to prevent or alleviate the cardiovascular diseases, such as hypertension and angina pectoris.

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Lee, Seog-Ki;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2013
  • The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.