• Title/Summary/Keyword: Adrenal glands

Search Result 113, Processing Time 0.025 seconds

Recurrent Post-Traumatic Adrenal Bleeding after Transcatheter Arterial Embolization: A Case Report (외상성 부신 손상에 대한 경카테터 동맥 색전술 후 재발성 출혈: 증례 보고)

  • Hyojoo Kim;Sang Hyun Seo;Hyun Seok Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1408-1413
    • /
    • 2023
  • Adrenal gland trauma is uncommon and is diagnosed at an increasing frequency using CT scans. However, owing to the rarity of this injury and its diverse clinical presentations and prognoses, there is no consensus on its management. In this case report, a 73-year-old male patient experienced recurrent bleeding in the right adrenal gland due to an in-car traffic accident, which was treated with repeated transcatheter arterial embolization.

Effects of Losartan on Catecholamine Release in the Isolated Rat Adrenal Gland

  • Noh, Hae-Jeong;Kang, Yoon-Sung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.327-335
    • /
    • 2009
  • The aim of this study was to determine whether losartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor could influence the CA release from the isolated perfused model of the rat adrenal medulla. Losartan (5${\sim}$50 ${\mu}$M) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}$M) and McN-A-343 (100 ${\mu}$M). Losartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with losartan (15 ${\mu}$M) for 90 min, the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}$M, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}$M, an inhibitor of cytoplasmic $Ca^{2+}$ -ATPase), veratridine (100 ${\mu}$M, an activator of $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150${\sim}$300 ${\mu}$M), losartan rather enhanced the CA secretion evoked by ACh. Collectively, these experimental results suggest that losartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla, but at high concentration it rather inhibits ACh-evoked CA secretion. It seems that losartan has a dual action, acting as both agonist and antagonist to nicotinic receptors of the rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of losartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement of the CA release.

Influence of Apamin on Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Eun-Sook;Park, Hyeon-Gyoon;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.142-151
    • /
    • 2002
  • The present study was attempted to investigate the effect of apamin on catecholamine (CA) secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of apamin (1 nM) into an adrenal vein for 20 min produced greatly potentiation in CA secretion evoked by ACh (5.32 $ imes$ $10^{-3}$ M), high $K^+$, (5.6 $ imes$ $10^{-2}$), DMPP ($10^{-4}$ M for 2 min), McN-A-343 ($10^{-4}$ M for 2 min), cyclopiazonic acid ($10^{-5}$ M for 4 min) and Bay-K-8644 ($10^{-5}$ M for 4 min). However, apamin itself did fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded with apamin (1 nM) under the presence of glibenclamide ($10^{-6}$ M), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretion evoked by DMPP and McN-A-343 was not affected. However, the perfusion of high concentration of apamin (100 nM) into an adrenal vein for 20 min rather inhibited significantly CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644. Taken together, these results suggest that the low concentration of apamin causes greatly the enhancement of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. These findings suggests that apamin-sensitive SK ($Ca^{2+}$) channels located in rat adrenal medullary chromaffin cells may play an inhibitory role in the release of catecholamines mediated by stimulation of cholinergic nicotinic and muscarinic receptors as well as membrane depolarization. However, it is thought that high concentration of apamin cause the inhibitory responses in catecholamine secretion evoked by stimulation of cholinergic receptors as well as by membrane depolarization from the rat adrenal gland without relevance with the SK channel blockade.

Influence of SKF81297 on Catecholamine Release from the Perfused Rat Adrenal Medulla

  • Choi, Deok-Ho;Cha, Jong-Hee;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.197-206
    • /
    • 2007
  • The aim of the present study was to investigate the effects of 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine(SKF81297), a selective agonist of dopaminergic $D_1$ receptor, on the secretion of catecholamines(CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to elucidate the mechanism involved. SKF81297($10{\sim}100{\mu}M$) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh(5.32 mM), high $K^+$(56 mM), DMPP($100{\mu}M$) and McN-A-343($100{\mu}M$). Also, in adrenal glands loaded with SKF81297($30{\mu}M$), the CA secretory responses evoked by Bay-K-8644($10{\mu}M$), an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid($10{\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. However, in the presence of the dopamine $D_1$ receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol(SCH23390, $3{\mu}M$), which is a selective antagonist of dopaminergic $D_1$ receptor, the inhibitory responses of SKF81297($30{\mu}M$) on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Collectively, these experimental results suggest that SKF81297 inhibits the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation(both nicotininc and muscarinic receptors) and membrane depolarization. This inhibitory of SKF81297 seems to be mediated by stimulation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that the presence of the dopaminergic $D_1$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Adrenal Vein Sampling in Primary Aldosteronism: A Pictorial Essay for Optimal Left-Side Sampling (일차성고알도스테론혈증에서의 부신정맥채혈술: 최적의 좌측채혈을 위한 임상화보)

  • Gi Joo Kim;Myung Sub Kim;Hyun Pyo Hong;Young Rae Lee;Yeon Gyu Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.2
    • /
    • pp.386-397
    • /
    • 2023
  • Primary aldosteronism (PA) is a curable cause of hypertension. Recent studies have revealed that the actual prevalence of PA is higher than previously recognized. Adrenal vein sampling (AVS) is an essential diagnostic procedure for revealing the cause of PA and determining the treatment plan. The success of AVS is confirmed by comparing cortisol levels between the samples from each adrenal vein and peripheral vein. The failure rate of the procedure is reported to be high in the right adrenal vein, which is directly connected to the inferior vena cava, while that in the left adrenal vein is relatively low; however, this has rarely been reported. In this review, we introduce and analyze cases of failure in left adrenal vein sampling.

The Effects of Caffeine on the Long Bones and Testes in Immature and Young Adult Rats

  • Kwak, Yoojin;Choi, Hyeonhae;Roh, Jaesook
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.157-164
    • /
    • 2017
  • This study was to evaluate the age-dependent effects of caffeine exposure on the long bones and reproductive organs using male rats. A total of 15 immature male rats and 15 young adult male rats were allocated randomly to three groups: a control group and two groups fed caffeine with 120 and 180 mg/kg/day for 4 weeks. Exposure to caffeine at either dose significantly reduced body weight gain; a proportional reduction in muscle and fat mass in immature animals, whereas a selective reduction in fat mass with relatively preserved muscle mass in young adult animals. The long bones of immature rats exposed to caffeine were significantly shorter and lighter than those of control animals along with decreased bone minerals. However, there was no difference in the length or weight of the long bones in young adult rats exposed to caffeine. Exposure to caffeine reduced the size and absolute weight of the testes significantly in immature animals in comparison to control animals, but not in young adult animals exposed to caffeine. In contrast, the adrenal glands were significantly heavier in caffeine-fed young adult rats in comparison to control animals, but not in caffeine-fed immature rats. Our results clearly show that the negative effects of caffeine on the long bones and testes in rats are different according to the age of the rat at the time of exposure, and might therefore be caused by changes to organ sensitivity and metabolic rate at different developmental stages. Although the long bones and testes are more susceptible to caffeine during puberty, caffeine has negative effects on body fat, bone minerals and the adrenal glands when exposure occurs during young adulthood. There is a need, therefore, to educate the public the potential dangers of caffeine consumption during puberty and young adulthood.

Naltrexone Inhibits Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Min, Seon-Young;Seo, Yoo-Seok;Choi, Cheol-Hee;Lee, Eun-Hwa;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.223-230
    • /
    • 2005
  • The purpose of the present study was to examine the effect of naltrexone, an opioid antagonist, on secretion of catecholamines (CA) evoked by cholinergic nicotinic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland and to establish the mechanism of its action. Naltrexone $(3{\times}10^{-6}M)$ perfused into an adrenal vein for 60 min produced time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M)$ , high $K^+$ $(5.6{\times}10^{-2}M)$ , DMPP ($10^{-4}$ M) and McN-A-343 $(10^{-4}M)$ . Naltrexone itself did also fail to affect basal CA output. In adrenal glands loaded with naltrexone $(3{\times}10^{-6}M)$ , the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$, were also inhibited. However, in the presence of met-enkephalin $(5{\times}10^{-6}M)$ , a well-known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Collectively, these experimental results demonstrate that naltrexone inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that this inhibitory effect of naltrexone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Influence of Quinidine on Catecholamine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization from the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Jeon, Yong-Joon;Yang, Won-Ho;Lim, Geon-Han;Kim, Il-Hwan;Lee, Seung-Myeong;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2000
  • The present study was designed to investigate the effect f quinidine on catecholamine (CA) secretion evoked by ACh, high $K^{+}$, DMPP, McN-A343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of quinidine (15-150 $\mu$M) into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretion evoked by ACh (5.32$\times$10$^{-3}$ M), high $K^{+}$ (5.6$\times$10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Furthermore, in adrenal glands pre-loaded with quinine (5$\times$10$^{-5}$ M), CA secretory responses evoked by veratridine (10$^{-4}$ M) was time-dependently inhibited. Also, in the presence of lidocaine (10$^{-4}$ M), which is also known to be a sodium channel blocker, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclo-piazonic acid were also greatly reduced in similar fashion to that of quinidine-treatment. Taken together, these results suggest that quinidine causes greatly the inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings indicate strongly that this inhibitory action of quinidine appears to be associated to the blocking action of sodium channels at least in CA secretion from the rat adrenal gland.and.

  • PDF

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

Influence of Strychnine on Catecholamine Release Evoked by Activation of Cholinergic Receptors from the Perfused Rat Adrenal Gland

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Oh, Song-Hoon;Kim, Il-Sik;Lee, Bang-Hun;Cho, Seong-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • The present study was attempted to investigate the effect of strychnine on catecholamine (CA) secretion evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland. The perfusion of strychnine $(10^{-4}\;M)$ into an adrenal vein for 20 min produced great inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min)$ and McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ but did not alter CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Strychnine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded simultaneously with strychnine $(10^{-4}\;M)$ and glycine (an agonist of glycinergic receptor, $10^{-4}\;M),$ CA secretory responses evoked by ACh, DMPP and McN-A-343 were considerably recovered to some extent when compared with those evoked by treatment with strychnine only. However, CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$ was not affected. Taken together, these results demonstrate that strychnine inhibits greatly the CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does not affect that by membrane depolarization. It is suggested that strychnine-sensitive glycinergic receptors are localized in rat adrenal medullary chromaffin cells.

  • PDF