• Title/Summary/Keyword: Admixture materials

Search Result 216, Processing Time 0.021 seconds

An Experimental Study on Reduction of Working Period of Concrete using High Early Strength Binder (조강형 결합재를 사용한 콘크리트의 공기단축에 관한 실험적 연구)

  • Kim, Dong-Jin;Kim, Min-Jeong;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.513-516
    • /
    • 2008
  • Recently, a demand for reduction of construction cost by reducing construction period is increasing because of the slump of the construction business, the increasing price of raw-materials and the enforcement of after-sale system. As a method of reducing construction period, many construction companies usually apply a method of reducing curing period. But if they use an existing early strength cement or admixture, they spend a heavy cost on materials and there are many problems, such as a heat of hydration and a loss of workability. The purpose of this research is a reduction of construction cost by reducing construction period as a earlier removal time of form. To check up application of concrete using high early strength binder and admixture, comparative tests were carried out with concrete using an existing early strength cement or admixture such as tests of diurnal variation, setting time and compressive strength.

  • PDF

Durability of Concrete Using Insulation Performance Improvement Materials (단열성능 향상 재료를 사용한 콘크리트의 내구성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kim, Se-Hwan;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, we tested to develop and apply structural insulation performance improvement concrete to field, which had compressive strength in 24 MPa and thermal conductivity twice as much as normal concrete. After experiment about slump and air contents, combination product of Plain and calcined diatomite powder showed reduction of slump and air contents and combination product with micro foam cell admixture, we cannot find result of slump and air contents reduction. Unit weight of combination product with insulation performance improvement materials decreased more than that of Plain. In the test of compressive strength, compressive strength of insulation performance improvement concrete decreased more than that of Plain but was content with 24 MPa. thermal conductivity of insulation performance improvement concrete tended to decrease. Freezing and thawing resistance of insulation performance improvement concrete was similar to that of Plain. In carbonation resistance test, combination product with calcined diatomite powder showed the result which was similar to that of Plain. In carbonation resistance test, combination product with micro foam cell admixture showed a increase compared to that of Plain and length variation of combination product generally increased.

Experimental Study on the Properties of Concrete by the Kinds of Admixture and the Replacement Ratios of Activated Hwangtoh (혼화재 종류 및 활성황토 대체율별 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 최희용;김무한;김문한;황혜주;최성우
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Pozzolan is to improve the strength and the durability of concrete as a result of the pozzolanic reaction, Broadly speaking, pozzolanic materials can be artificial materials, such as slica fume and fly ash, and natural material, such as rice husk ash, clay, volcanic ash, clayish pozzolan. Hwangtoh is a mineral which belongs to a group of matakaolin, especially halloysite, and the main elements is SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$. The purpose of this study is to examine the application of Hwangtoh for the concrete admixtures, the composition of this study is shown as follows. Chapter I is analysis for properties of concrete as the kinds of admixture, and Chapter H is analysis for properties of concrete as the replacement ratio of activated Hwangtoh. As a result of this study, Hwangtoh is found to have high practical use as pozzolanic material, and the pertinent range of replacement ratios of Hwangtoh on cement are 10∼20 %.

Experimental Study of Exterior Panel Properties using Ultra High Performance Concrete (UHPC를 활용한 건축용 외장 패널 특성에 관한 실험적 연구)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.229-237
    • /
    • 2022
  • Ultra High Performance Concrete(UHPC) is a construction material that has a low water-binder ratio (W/B), a high-performance chemical admixture(SP), mixing material and steel fiber, and performance superior to that of regular concrete in terms of liquidity and strength. In the study, UHPC was used to prepare construction external panels that can replace existing stone panels. In addition, experiments were conducted to access the effects of differences in chemical admixture input amount, the number of fillers, antifoaming agent and steel fiber. An evaluation, was conducted, such of concrete compressive strength, flexural strength, impact strength, absorption rate, and frost resistance. The results showed compressive strength up to 115.5MPa, flexural strength of 20.3MPa, and an absorption rate of 1%. In this case, impact strength and frost resistance evaluation were satisfied with outward observed.

Optimizing cement replacement with rice husk ash and eggshell ash for enhanced mechanical properties of geopolymer concrete: A comparative study with and without admixture

  • Yashwanth Pamu;Venkata Sarath Pamu;Praveen Samarthi;Mahesh Kona
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.707-724
    • /
    • 2024
  • This paper proposes a study of cement replacement with rice husk ash (RHA) and eggshell ash (ESA) for enhanced mechanical properties of geopolymer (GP) concrete with and without admixture. The main objective is to investigate the mechanical properties of GP with various replacement levels of Pozzolana Portland cement by RHA and ESA. The GP resistance to durability is examined and impact of ash materials on concrete's durability performance is determined. The environmental benefits of using agricultural waste materials in GP manufacturing minimize cement usage and CO2 emissions. The goal is to assess value of RHA-ESA of building material, paving stones for structures to lessen environmental impact. The novelty lies in use of ESA and RHA as partial replacements for cement and investigation of admixtures to enhance concrete properties, and reduce environmental impact. The research contributes by introducing a novel approach to reducing cement consumption by using ESA and RHA to address environmental concerns. It also explores the potential benefits of admixtures improving concrete performance and reducing environmental pollution. A study is carried with and without impacts of admixture to find compressive strength of GP cubes. The cement has been replaced by RHA and ESA in the range of (2.5%+7.5%, 5%+5%, 7.5%+2.5) by weight of cement for M20 mix. The compressive strength (CS) and split tensile strength (STS) at 7days, 14 days and 28 days is obtained as 21 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 24 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 28 N/mm2 at 7.5%RHA+2.5%ESA and 2.8 at 7.5%ESA respectively with normal curing condition.

Effect of Repeated Addition of Admixture on Mechanical Properties of Concrete (혼화제의 반복된 추가가 콘크리트의 역학적 특성에 미치는 영향)

  • Lee, Si-Woo;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.148-153
    • /
    • 2010
  • Concrete used as structural materials in construction fields is supplied as a type of carry and placement by ready-mixed concrete (RMC) truck after proportioning in batch plant. However, during conveying of concrete to the field, due to traffic jam, weather, etc., it is not easy to maintain adequate slump. In this case, we think that the insert of an admixture to concrete has no problem in concrete. For RMC, when the slump is not sufficient, the truck driver insert water additionally without any considerations. After that, concrete is placed after re-mixing and this leads to serious reasons such as strength reduction less than design strength considered in the structural design. Accordingly, in this study, to solve the problem to insert water without realistic reasons in RMC, basic experimental studies were performed. Admixtures used frequently in fields were selected and addition's repeated time and elapsed time interval after initial addition of the admixture were selected as main variables. Authors want that the results of this study is used as basic data to resolve the question.

An Experimental Study on the Initial Physical Properties of Cement Mortar with POFA (POFA 혼입률에 따른 시멘트 모르타르의 초기 물성에 관한 실험적 연구)

  • Wi, Kwang-Woo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.122-123
    • /
    • 2015
  • Demands for the replacement materials of cement have been increasing due to social problems such as CO2 reduction and exhaustion of resource. Recently industrial by-products, for example GGBFS and fly ash, have been used as an admixture. However Studies on POFA have been insufficient. POFA, which is used in this study, was obtained from burning of palm oil shell and husk from a southern part of Malaysia. In this study, early compressive strength and porosity of cement mortar with POFA are measured, and appropriate fraction of POFA is 10%. In terms of porosity, POFA is used as a filer in mortar. Later, activity index of POFA and long-term experiments are needed.

  • PDF

Strength Estimation of GGBF Slag Concrete by Warm Water Method (온수법에 의한 고로슬래그 미분말 혼합 콘크리트의 강도추정)

  • 문한영;최연왕;김용직
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.313-318
    • /
    • 2001
  • The cost of producing ready mixed concrete(remicon) has increased due to the rising cost of raw materials for concrete and transportation caused by the upturn of oil price. In contrast, its orders have also decreased due to the recession of the construction industry. In addition, the cost of delivery has decreased owing to the excessive competition among manufacturing companies, so manufacturing companies began mixing ground granulated blast-furnace slag or fly ash to lower the cost. However, there is no way to determine whether the strength of the concrete using the admixture is satisfied or dissatisfied with design strength at the early age. The purpose of this study is dedicated to early strength estimation of concrete mixed with an admixture, ground granulated blast-furnace slag.

  • PDF

Experimental Study on Bonding Properties of Reinforced Concrete with Water-Cement Ratio and Blending of Mineral Admixture (물-시멘트비 및 혼화재 혼입에 따른 철근콘크리트의 부착 특성에 관한 연구)

  • Choi, Yoon-Suk;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.225-228
    • /
    • 2006
  • To clarify the one body behavior of reinforcing bar and concrete, it is important to investigate bond characteristics between two materials. Bond strength is decided by applied force and interface area between reinforcing bar and concrete. And, the resultant force of chemical adhesive force, frictional force, and mechanical interaction are to be main factors. Property of concrete influences on chemical adhesive force and frictional force; bond strength is decreased by corrosion of reinforcing bar, as the result, durability is also decreased. In this study, to confirm bond characteristics with property of concrete, w/c ratio and blending of mineral admixture were selected as the main test parameters. The results obtained from this study will be used as the basic data for bond characteristics with corrosion.

  • PDF

An Experimental study on Explosive spalling of Concrete According to Kinds of Fine Aggregate and Admixture (잔골재 및 혼화재 종류에 따른 콘크리트의 폭열 성상에 관한 실험적 연구)

  • 장재봉;김갑수;김재환;김용로;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.667-670
    • /
    • 2003
  • The purpose of this study is to present data for the reusing, reinforcement and estimation of safety of the RC structure damaged by fire, and for the prevention of explosive spalling by checking the character of explosive spalling according to kinds of fine aggregate, admixture and water-cement ratios. The materials used fine aggregates were sea sand, crushed sand and recycled sand, and the admixtures were fly ash and blast-furnace slag. Also the water-cement ratios was 55% and 30.5%. After those were heated respectively for 30 and 60 minutes in accordance with Standard Time-Temperature Curve. And then conditions of explosive spalling were divided into five grades, and characters of explosive spalling were investigated.

  • PDF