• Title/Summary/Keyword: Admixture materials

Search Result 216, Processing Time 0.03 seconds

Effect of crushed waste glass as partial replacement of natural fine aggregate on performance of high strength cement concrete

  • Ajmal, Paktiawal;Mehtab, Alam
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-277
    • /
    • 2022
  • Disposal of industrial waste in cities where municipal authorities permitting higher floor area ratio coupled with increasing living standards, a lot of demolition waste is being generated. Its disposal is a challenge particularly in megacities where no landfills are available. The ever-increasing cost of building construction materials also necessitates consuming demolition wastes in a useful manner to save fresh natural raw materials. In the present work, the crushed waste glass is used in high-strength concrete as a partial replacement of fine aggregate. The control concrete of grade M60 was proportioned following BIS 10262-2009. The crushed waste glass has been used as a partial replacement with varying percentages of 10, 20, 30, and 40% by weight of fine aggregate. Experimental tests were carried on the fresh and hardened state of the concrete. The effect of crushed waste glass on the workability of the concrete has been investigated. Non-destructive tests, acid attack tests, compressive strength, split tensile strength, and X-ray diffraction analysis was carried out for the control concrete and concrete containing crushed waste glass after 7, 28, and 270 days of normal curing. The results show that for the same w/c ratio, the workability of concrete increases with increasing replaced crushed waste glass content. However, the decrease in compressive strength of the concrete after 28 days of normal curing and further after 28 days of acid attacks, up to 30% replacement level of fine aggregate by the crushed waste glass is insignificant.

Concrete Specification and Mixing Design for the Reduction of Slab Defects in Underground Parking Lot (지하주차장 슬래브 하자 저감을 위한 콘크리트 규격 및 배합설계)

  • Kim, Han-Sic;Ha, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.235-236
    • /
    • 2023
  • Concrete surfaces have weak surface strength due to bleeding and laitance, and problems such as peeling, cracking, and cracking may occur. In particular, underground parking lots can be said to be more vulnerable to peeling, breaking, and cracking if excessive loading of materials and equipment movement are not managed at the initial age after placing of concrete. Cracks, peeling, and cracking problems in slab concrete in underground parking lots of apartments can lead to leakage problems and affect finishing materials constructed on top of topping concrete, reducing the performance required for waterproof materials. Therefore, in this study, the bleeding and surface strength according to the standard of topping concrete and the use of admixture were reviewed to solve the crack, peeling, and cracking problems among the types of defects in underground parking lot slab concrete. As a result, it was derived that the optimal concrete compressive strength is 30MPa or more, and it is a reasonable performance design method to prohibit the substitution of admixtures.

  • PDF

TE-TM Mode Conversion in Thin- Film Optical Wave-guides with Gyrotropic and Anisotropic Materials (박막형 광도파관에서 이방성 매질에 의한 TE-TM 모드 변환)

  • 정상구;원영희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.17-32
    • /
    • 1982
  • Wave propagation in gyrotropic or anisotropic medium is analyzed in terms of the eigenmodes of the medium, which are admixture of TE and TM waves. The field composition and the phase velocity of the modes are also determined. The results of the analysis are applied to thin film optical waveguide using such medium as substrate and/or film. Based on the characteristic equations for phase constants of the waveguide, the condition for TE-TM mode convection is derived, and wave propagation in the guide is represented in the form of Jones matrix, which allows a new interpretation in the conversion efficiency of the thin-film optical waveguides.

  • PDF

An Experimental Study on Durability of Mortar and Concrete using Shrinkage reducing typed Superplasticizer (수축저감형 혼화제를 이용한 모르타르 및 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Woo, Hyung-Min;Park, Hee-Gon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.561-569
    • /
    • 2016
  • Concrete is cheap, easy to deal with, and the quality is satisfactory. Also, it is one of the easiest materials to get because chemical composition of cement is similar to chemical composition of surface. On the other hand, it is so vulnerable to transform because of weak binding capacity and low binding energy that it produces cracks. Cracks decline durability, usability, safety of structures and damage exterior. In order to decline drying shrinkage crack, this study used shrinkage reducing typed Superplasticizer, which is combination of and water-reducing agent for convenience, different with existing study using AE agent, water-reducing agent, shrinkage reducing agent,. Considering SRS field application possibility, this study planned to mix concrete and mortar generally used in ready-mixed concrete company and did basic experiment depending on a change of SRS content ratio and admixture. Based on the experiment result. It is judged that SRS admixture 2% is proper ratio when Given the intensity and length change. Also mass combination will conduct follow-up studies.

Fluidity of Cement Paste and Fluidity and Compressive Strength of Cement Mortar Substituted by Pozzolanic fine Powders and II-Anhydrite (포졸란계 미분말과 ∥ 형 무수석고 치환 시멘트 페이스트 유동성과 시멘트 모르타르의 유동성 및 압축강도)

  • 노재성;이범재;김도수;이병기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.149-156
    • /
    • 1997
  • In order to improve compressive strength of cement mortar, powder admixture(FAS) was mmufactured by mixing fly ash. Il-anhydite and silica hume, and superplasticizer was used for the control of fluidity reduction with the use of this admixture. Cement was substituted by 10, 20wt% of FAS respectively. At W/S = 0.40, the fluidity of' cement paste substituted by PAS was decreased. NSF and NT-2 were very effective fbr the control of fluidity reduction. As the particle size of U -anhydrite was fine, the fluidity of cement mortar was increased. The fluidity reduction of cement mortar substituted by 10wt% of FAS was controlled. The compressive strength of cement mortar substituted by 10wt% of FAS showed higher. value than that of 20wt%, expecially specimen(C1) substituted by 10wt% of $\gamma$ had the highest compressive strength value.

A Fundamental Study on the Quality Improvement of Lightweight Foamed Concrete with Admixture Types (혼화재료에 의한 경량기포 콘크리트의 품질향상에 관한 기초적 연구)

  • Shin Jae-Kyung;Jeong Kwang-Bok;Lee Youl-Koo;Lee Gun-Cheol;Yoon Gi-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.35-38
    • /
    • 2006
  • This study investigated fundamental properties of lightweight foamed concrete using cement kiln dust (CKD) and both fly ash(FA) and stability agent. Test results showed that concrete incorporating more amounts of admixture decreased slump flow and it caused increase of superplasiticizer in order to secure the fluidity performance. In addition concrete adding stability agent showed stable flow state, resisting segregation of materials and decreasing bleeding capacity. Sinking depth of concrete incorporating 20% of CKD and adding 0.002% of stability agent was indicated at 0mm. For the properties of hardened concrete. compressive strength of concrete incorporating CKD declined due to a lower appearance density, compared with other specimens. The difference of that was not very significant and the value of ail specimen was higher than KS range. Moreover strength of concrete incorporating CKD was even higher at curing temperature $5^{\circ}C$. Tensile strength ratio of concrete incorporating CKD was indicated between 0.50 to 0.59, which is higher value than control concrete. Heat conductivity of concrete incorporating FA was under the KS range while concrete incorporating 20% of CKD was satisfied in KS. Concrete adding stability agent improved insulation performance due to the lower heat conductivity. In conclusion, it is possible that concrete incorporating 20% of CKD and adding 0.002% of stability agent can secure high quality of lightweight foamed concrete.

  • PDF

The Fundamental Study on Properties of Concrete Using the Garnet with Industrial Wastes (산업부산물인 가네트를 이용한 콘크리트의 성질개선에 관한 기초적 연구)

  • Lim, Byoung-Ho;Park, Jung-Min;Kim, Tae-Gon;Kim, Wha-Jung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.183-190
    • /
    • 1999
  • This paper investigated the possibility of appling to concrete through fundamental experiment for garnet, which was industrial wastes generated in kyung pook region, in aspects of development of new materials and recycling of industrial wastes due to shortage of natural resources. Consequently, garnet powder showed the possibility of admixture as showed in the chemical composition because the content of silica and alumina in relation to pozzolanic activity was about 50%. The time of setting was more or less diminished as the increasing of replacement ratio of garnet. In flow test, flow values tended to increase to some degree as the increasing of replacement ratio of garnet. Therefore, application of garnet was expected to improve the workability of concrete. The compressive strength of mortar replaced by garnet was respectively increased as compared with plain mortar and the maximum strength was showed in replaced by 10%, however a little different to the change of W/B ratio. Also, the possibility of admixture to reduce the amount of cement and to improve the property of concrete was showed as the strength of mortar replaced by garnet was comparable to that by existing admixture(silica fume, fly-ash).

An Experimental Study on the Early Strength Development Properties of Concrete According to Curing Condition and Used Materials (사용재료 및 양생조건에 따른 콘크리트의 조기강도발현 특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Ji-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.721-729
    • /
    • 2008
  • The purpose of this study is to investigate the engineering properties of concrete for the early strength development. As a result of reviewing it by establishing each experimental factor and level, the cement had more excellent quality performance in CHC and HESPC than OPC. This study has shown that the PC series admixture was more excellent in side of elapsed time (aging) and early strength development than PNS series admixture. In addition, there was much difference according to the curing temperature, but the early strength development showed the considerable vulnerability in curing temperature below $12^{\circ}C$. To satisfy the strength requirements of 5 MPa/18 hr this study has shown that it needed the curing temperature over $17^{\circ}C$ to the minimum in OPC, over $14^{\circ}C$ in CHC, and over $11^{\circ}C$ in HESPC. On the other hand, as to the strength properties according to W/C, the less W/C was, the more strength development was excellent. If this study is to be used in construction filed on a basis of this result, this researcher is considered as possible of the economic execution of construction by advancing the early strength and by the reduction of construction cost according to shortening construction duration.

Flexural Analysis of RC Beam Considering Autogenous Shrinkage Model (자기수축 모델을 고려한 철근콘크리트 보의 휨 거동 해석)

  • Yoo Sung-Won;Soh Yang-Sub;Cho Min-Jung;Koh Kyung-Taek;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.621-628
    • /
    • 2005
  • Recently, it is noticed that autogenous shrinkage of high-performance concrete causes early crack in high performance concrete structures. The purpose of the present study is to derive a realistic equation to estimate the autogenous shrinkage of high performance concrete and to apply to structural analysis. For this purpose, several series of concrete specimens have been tested. When water-binder ratio is fixed to $30\%$, major test variables were the type and contents of mineral admixture. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased with the autogenous shrinkage. A prediction equation to estimate the autogenous shrinkage of HPC with mineral admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral admixture. The finite element program developed in this study provides the useful tool for the flexural analysis including the autogenous shrinkage model. By this program, we know that the tensile stress considering the autogenous shrinkage of reinforced concrete structures increase $20\~27\%$ than that not considering.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.