• Title/Summary/Keyword: Adjust function

Search Result 245, Processing Time 0.024 seconds

Differences in Urine Cadmium Associations with Renal Damage Markers According to the Adjustment with Specific Gravity or Urinary Creatinine (요비중 또는 크레아티닌 보정에 따른 요중 카드뮴과 신장손상지표와의 관련성 비교)

  • Kim, Yong-Dae;Eom, Sang-Yong;Yim, Dong-Hyuk;Kwon, Soon Kil;Park, Choong-Hee;Kim, Guen-Bae;Yu, Seung-Do;Choi, Byung-Sun;Park, Jung-Duck;Kim, Heon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.265-271
    • /
    • 2019
  • In general, specific gravity (SG) and urinary creatinine (CR) have been used to adjust urinary cadmium (Cd) concentrations. However, the validity of correction methods has been controversial. We compared the two adjustments to evaluate associations between urinary Cd and various renal damage markers and to evaluate the relationship between urinary Cd concentration and renal disease markers, such as estimated glomerular filtration rate (eGFR), in a relatively large general population sample. Among the 1,086 volunteers who were enrolled in this study, 862 healthy volunteers who did not have kidney disease were included in the final analysis. Urinary Cd, malondialdehyde (MDA), and N-acetyl-${\beta}$-D-glucosaminidase (NAG) concentrations were measured, the creatinine-based eGFR was calculated, and the relationships between these markers were subsequently analyzed. This study showed the use of urinary Cd concentration adjusted with SG rather than with urinary creatinine may be appropriate in studies evaluating renal function based on Cd exposure. Urinary Cd concentration adjusted with SG had a positive correlation with urinary MDA levels and a negative correlation with eGFR. This relationship was relatively stronger in women than in men. This study showed that urinary Cd level was associated with decreased eGFR in the general population, and oxidative stress was likely to act as an intermediator in this process. These results suggest that eGFR can be a very good indicator of kidney damage caused by Cd exposure in the general population.

Performance Features of Pansori Drummer from a viewpoint of the Relationship with Singer (창자와의 관계에서 본 판소리 고수의 공연학)

  • Song, Mikyoung
    • (The) Research of the performance art and culture
    • /
    • no.23
    • /
    • pp.63-103
    • /
    • 2011
  • This paper inquires closely into the background of pansori gosu(drummer) and his social position based on documents and oral materials and the performance features of gosu in the entire process of pansori performance, 'preparation', 'performance' and 'aftermath', focused on the relationship between the changja(singer)-gosu. In the past, some gosus were ex-tightrope performers. Their social position and working conditions were better than that of the ex-tightrope performers but were worse than that of the pansori singer. After 1910's, people formed some special sense about the gosu due to the change of the space for pansori performances and the technological advances on the media, and gosu's conditions improved. The theory of pansori drum gradually began to be established well. The function and the role of gosu in the whole process of pansori performance may be summarized as follows. To begin with, the training with various and a lot of singers is required in the 'preparation'. Rehearsals are divided into individual practices and joint practices, and the latter can be controlled by the level of the capacity of gosu and the degree of the experience between chanja-gosu. Next, bobiwi(flattering drumming) and chuimsae(encouraging remarks) are important in tbe 'process'. The gosu has to share the speed of one jangdan(rhythmic patterns) and the accent of the sori and adjust his enery. Besides, he has to acknowledge the naedeureum(beginning sign) and reply with changja's singing. In formal performances, working in harmony with changja and gosu and their joint experiences are necessary for the gosu; in pansori contests, giving chanja a stability; in contests for gosu, drumming skill, position, chuimsae; in small performances and new adaptation of pansori, cheap fees and positive response of the transformational play or ad-lib; in lecturer concerts, reacting quickly to rapidly changing situations. Chuimsae is way which gosus and audiences express their feeling together, however, its context and sound are different. Finally, 'aftermath' is a process the pair of chamgja and gosu mutually evaluates about performance or audiences estimate that.

Social division of labor in the traditional industry district - foursed on Damyang bamboo ware industry of Damyang and Yeoju pottery industry of Yeoju, South Korea (우리나라 재래공업 산지의 사회적 분업 - 담양죽제품과 여주 도자기 산지를 사례로 -)

  • ;;;Park, Yang-Choon;Lee, Chul-Woo;Park, Soon-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.269-295
    • /
    • 1995
  • This research is concerned with the social division of labor within the traditional industry district: Damyang bamboo ware industry district and Yeoju pottery industry district in South Korea, Damyang bamboo ware and Yeoju pottery are well known of the Korean traditional industry. The social division of labor in an industry district is considered as an important factor. The social division of labor helps the traditional industry to survive today. This summary shows five significant points from the major findings. First, Damyang bamoo ware industry and Yoeju pottery industry have experienced the growth stages until 1945, the stagnation in the 1960s, and the business recovery in the 1980s. Most Korean traditional industries had been radically declined under the Japanese colonization; while, Damyang bamboo ware industry and Yeoju pottery industry district have been developed during above all stages. The extended market to Japan helped the local government to establish a training center, and to provide financial aids and technical aids to crafts men. During the 1960s and 1970s, mass production of substitute goods on factory system resulted in the decrease of demand of bamboo ware and pettery. During the 1980s, these industries have slowly recovered as a result of the increased income per capita. The high rate of economic growth in the 1960s and 1970s was playing an important role in the emerging the incleased demand of the bamboo ware and pottery. Second the production-and-marketing system in a traditional industry district became diversified to adjust the demand of products. In Damyang bamboo ware industry district, the level of social division of labor was low until the high economic development period. Bamboo ware were made by a farmer in a small domestic system, The bamboo goods were mainly sold in the periodic market of bamboo ware in Damyang. In the recession period in the 1960s and 1970s, the production-and-marketing system were diversified; a manufacturing-wholesale type business and small-factory type business became established; and the wholesale business and the export traders in the district appeared. In the recovery period in the 1980s, the production-and-marketing systems were more diversified; a small-factory type business started to depend On subcontractors for a part of process of production; and a wholesale business in the district engaged in production of bamboo ware. In Yeoju pottery industry district, the social division of labor was limited until the early 1970s. A pottery was made by a crafts man in a small-business of domestic system and sold by a middle man out of Yeoju. Since the late 1970s, production-and-marketing system become being diversified as a result of the increased demand in Japan and South Korea. In the 1970s, Korean traditional craft pottery was highiy demanded in Japan. The demand encouraged people in Yoeju to become craftsmen and/or to work in the pottery related occupation. In South Korea, the rapid economic growth resulted in incline to pottery due to the development of stainless and plastic bowls and dishes. The production facilities were modernized to provide pottery at the reasonable price. A small-busineas of domestic system was transformed into a small-factory type business. The social division of labor was intensified in the pottery production-and-maketing system. The manufacturing kaoline began to be seperated from the production process of pottery. Within the district, a pottery wholesale business and a retail business started to be established in the 1980s. Third the traditional industry district was divided into "completed one" and "not-completed one" according to whether or not the district firms led the function of the social division of labor. The Damyang bamboo ware industry district is "completed one": the firm within the district is in charge of the supply of raw material, the production and the marketing. In the Damyang bamboo ware district, the social division of labor w and reorganized labor system to improve the external economics effect through intensifying the social division of labor. Lastly, the social division of labor was playing an important role in the development of traditional industry districts. The subdivision of production process and the diversification of business reduced the production cost and overcame the labor shortage through hiring low-waged workers such as family members, the old people and housewives. An enterpriser with small amount of capital easily joined into the business. The risk from business recession were dispersed. The accumulated know-how in the production and maketing provided flexiblility to produce various goods and to extend the life-cycly of a product.d the life-cycly of a product.

  • PDF

The Comparison of Quantitative Indices by Changing an Angle of LAO View in Multi-Gated Cardiac Blood Pool Scan (게이트 심장 혈액풀 스캔에서 좌전사위상 각도의 변화에 따른 정량적 지표 비교)

  • Yoon, Soon-Sang;Nam, Ki-Pyo;Ryu, Jae-Kwang;Kim, Seong-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.57-61
    • /
    • 2012
  • Purpose: The multi-gated cardiac blood pool scan is to evaluate the function of left ventricle (LV) and usefully observe a value of ejection fraction (EF) for a patient who is receiving chemotherapy. To calculate LVEF, we should adjust an angle of left anterior oblique (LAO) view to separate both ventricles. And by overlapped ventricles, it is possible to affect LVEF. The purpose of this study is to investigate and compare quantitative indices by changing an angle of LAO view. Materials and methods: We analyzed the 49 patients who were examined by multi-gated cardiac blood pool scan in department of nuclear medicine at Asan Medical Center from June to September 2011. Firstly, we acquired "Best septal" view. And then, we got images by addition and subtraction of angle for LAO view to anterior and lateral. We compared three LAO views for 20 people by 5 degrees and 39 people by 10 degrees. And we analyzed quantitative indices, EF, end diastole and end systole counts, by automated and manual region of interest (ROI) modes. Results: Firstly, we analyzed quantitative indices by automated ROI mode. In case of 5 degrees, the averages of EF are $61.0{\pm}7.5$, $62.1{\pm}7.1$, $60.9{\pm}6.7%$ ($p$=0.841) in LAO, LAO $-5^{\circ}$ and LAO $+5^{\circ}$ respectively. And there is no difference in end diastole and end systole counts ($p$<0.05). In case of 10 degrees, the averages of EF are $62.4{\pm}9.5$, $62.3{\pm}10.8$, $61.6{\pm}.9.3%$ ($p$=0.938) in LAO, LAO $-10^{\circ}$ and LAO $+10^{\circ}$ respectively. And there is no difference in end diastole and end systole counts ($p$<0.05). Secondly, we analyzed quantitative indices by manual ROI mode. In case of 5 degrees, the averages of EF are $62.8{\pm}7.1$, $63.6{\pm}7.5$, $62.7{\pm}7.3%$ ($p$=0.903) in LAO, LAO $-5^{\circ}$ and LAO $+5^{\circ}$ respectively. And there is no difference in end diastole and end systole counts ($p$<0.05). In case of 10 degrees, the averages of EF are $65.5{\pm}9.0$, $66.3{\pm}8.7$, $63.5{\pm}.9.3%$ (p=0.473) in LAO, LAO $-10^{\circ}$ and LAO $+10^{\circ}$ respectively. And there is no difference in end diastole and end systole counts ($p$<0.05). Conclusion: When an image is nearly "Best septal" view, the difference of LAO angle would not affect to change LVEF. Although there was no difference in quantitative analysis, deviations could happen when to interpret wall motion qualitatively by reading physicians.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF