• Title/Summary/Keyword: Adjacent excavation

Search Result 215, Processing Time 0.026 seconds

2D and 3D numerical analysis on strut responses due to one-strut failure

  • Zhang, Wengang;Zhang, Runhong;Fu, Yinrong;Goh, A.T.C.;Zhang, Fan
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2018
  • In deep braced excavations, struts and walers play an essential role in the whole supporting system. For multi-level strut systems, accidental strut failure is possible. Once a single strut fails, it is possible for the loads carried from the previous failed strut to be transferred to the adjacent struts and therefore cause one or more struts to fail. Consequently, progressive collapse may occur and cause the whole excavation system to fail. One of the reasons for the Nicoll Highway Collapse was attributed to the failure of the struts and walers. Consequently, for the design of braced excavation systems in Singapore, one of the requirements by the building authorities is to perform one-strut failure analyses, in order to ensure that there is no progressive collapse when one strut was damaged due to a construction accident. Therefore, plane strain 2D and three-dimensional (3D) finite element analyses of one-strut failure of the braced excavation system were carried out in this study to investigate the effects of one-strut failure on the adjacent struts.

Comparison of Displacement of the Braced Retaining Wall by Developed Elasto-Plastic Analysis (개선된 탄소성 해석을 이용한 버팀지지 흙막이벽의 거동비교)

  • Shin, Jin-Whan;Kim, Dong-Shin
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, when being constructed the large structures, the deep excavations have performed to utilize the underground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground is frequently occurred. the Analysis of the retaining structures is necessary to safety of the excavation works. There are many methods such as elasto-plastic theory, FEM, and FDM to analyze the displacement of the retaining structure. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement bye the Inclinometer. The monitored fields were three excavation work site in S-I, S-II, and S-III area. Excavation method of each site is braced retaining wall using H-pile. Excavation depth is 14m, 14m, and 8.2m.

A Case on Excavation Plan and Design of Adjacent Railroad Tunnel (근접 철도터널의 굴착계획 및 설계 사례)

  • 김선홍;정동호;석진호;정건웅;서성호
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.59-71
    • /
    • 2002
  • The points of this design case are the planning and excavation method of a new double-tracked railroad tunnel which is approx. 11∼22 meters apart from existing single-tracked railroad tunnel. For the optimum excavation method some needs are required in design stage, such as the reduction of noise and vibration, public resentment, damage of buildings and construction costs. Hence the estimation and application of allowable noise and vibration criterion is important. The ground coefficient (K, n) of this site is determined by field trial blasting. The excavation method is chosen to satisfy the allowable noise and vibration criterion. In addition, in order to ensure the stability of existing single-tracked railroad tunnel, the instrumentation of maintenance level is accompanied during the construction stage. As a result of this design condition, central diaphragm excavation with line drilling and pre-large hole boring blasting is applied to the area within 15 meters apart from existing tunnel. And above 15 meters apart, pre-large hole boring blasting is designed.

Evaluation of Structural Stability of Tunnel due to Adjacent Excavation on Urban Transit (도시철도 인접굴착공사에 따른 터널구조물의 구조 안정성 평가)

  • Choi, Jung-Youl;Lee, Ho-hyun;Kang, You-Song;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.503-508
    • /
    • 2020
  • The three-dimensional precision numerical analysis was performed using the finite element model applied with the railway track model consisting of rails, As a result of analyzing the track deformation level of the existing tunnel due to the excavation work adjacent to the urban transit, it was found that the evaluation criteria (allowed values) of conventional railways lines were satisfied. Based on the numerical analysis, it was analyzed that the results of the prediction of the tunnel structural stability of due to the excavation work and the level of the tunnel deformation occurring at the actual site could be approximated as closely as possible.

Evaluation of Track Irregularity Effect due to Adjacent Excavation on Serviced Railway Line (철도시설물 인접굴착공사에 따른 운행선 궤도의 궤도틀림 영향 평가)

  • Choi, Jung-Youl;Park, Dong-Ryong;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.401-406
    • /
    • 2019
  • The three-dimensional precision numerical analysis was performed using the finite element model applied with the railway track model consisting of rails, sleepers, and track elastic springs(ballast, rail pad). As a result of analyzing the track deformation level of the existing tracks due to the excavation work adjacent to the railway facilities, it was found that the track irregularity evaluation criteria (allowed values) of both conventional and high-speed railways lines were satisfied. Based on the numerical analysis using the track model, it was analyzed that the results of the prediction of the track irregularity due to the excavation work and the level of the track deformation occurring at the actual site could be approximated as closely as possible.

Influence characteristics of isolation piles on deformation of existing shallow foundation buildings under deep excavation

  • Liu, Xinrong;Liu, Peng;Zhou, Xiaohan;Wang, Linfeng;Zhong, Zuliang;Lou, Xihui;Chen, Tao;Zhang, Jilu
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Urban deep excavation will affect greatly on the deformation of adjacent existing buildings, especially those with shallow foundations. Isolation piles has been widely used in engineering to control the deformation of buildings adjacent to the excavation, but its applicability is still controversial. Based on a typical engineering, numerical calculation models were established and verified through monitoring data to study the influence characteristics of isolation piles on the deformation of existing shallow foundation buildings. Results reveal that adjacent buildings will increase building settlement δv and the deformation of diaphragm walls δh, while the isolation piles can effectively decrease these. The surface settlement curve is changed from "groove" type to "double groove" type. Sufficiently long isolation pile can effectively decrease δv, while short isolation piles will lead to a negative effect. When the building is within the range of the maximum settlement location P, maximum building rotation θm will increase with the pile length L and the relative position between isolation pile and building d/D increase (d is the distance between piles and diaphragm walls, D is the distance between buildings and diaphragm walls), instead, θm will decrease for buildings outside the location P, and the optimum was obtained when d/D=0.7.

Model Tests for the Damage Assessment of Adjacent Buildings in Urban Excavation (흙막이굴착에 따른 인접건물의 손상평가에 대한 모형실험연구)

  • Kim, Hak-Moon;Hwang, Eui-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.121-131
    • /
    • 2007
  • This study is to investigate the damage assessment of adjacent structures due to excavation in urban environment. Model tests were carried out for 2 story masonry building and frame structures in various shapes and locations. The damage level of adjacent structures were very differently estimated in accordance with the shape ratio (L/h) of structures, construction stages, and various locations. Therefore the most weak part (bay) of structure must be heavily instrumented and monitored in more details at early stage of constructions. The progressive crack development mechanism at various construction stages was revealed through model tests and crack size indicated more conservative side of damage level on the damage level graph.

Prediction of Deep Excavation-induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 굴착에 따른 지표침하평가)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.69-76
    • /
    • 2003
  • This paper presents the prediction of deep excavation-induced ground surface movements using artifical neural network(ANN) technique, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Arificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Prediction of Deep Excavation-induced Ground Surface Movements Using Artificial Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.53-65
    • /
    • 2004
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network(ANN) technique, which is of prime importance in the damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements, was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Artificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effective for a first-order prediction of ground movements associated with deep-excavation.