• 제목/요약/키워드: Adipose tissue-derived stem cells

검색결과 99건 처리시간 0.029초

Melatonin Protects Human Adipose-Derived Stem Cells from Oxidative Stress and Cell Death

  • Tan, Shaun S.;Han, Xiaolian;Sivakumaran, Priyadharshini;Lim, Shiang Y.;Morrison, Wayne A.
    • Archives of Plastic Surgery
    • /
    • 제43권3호
    • /
    • pp.237-241
    • /
    • 2016
  • Background Adipose-derived stem cells (ASCs) have applications in regenerative medicine based on their therapeutic potential to repair and regenerate diseased and damaged tissue. They are commonly subject to oxidative stress during harvest and transplantation, which has detrimental effects on their subsequent viability. By functioning as an antioxidant against free radicals, melatonin may exert cytoprotective effects on ASCs. Methods We cultured human ASCs in the presence of varying dosages of hydrogen peroxide and/or melatonin for a period of 3 hours. Cell viability and apoptosis were determined with propidium iodide and Hoechst 33342 staining under fluorescence microscopy. Results Hydrogen peroxide (1-2.5 mM) treatment resulted in an incremental increase in cell death. 2 mM hydrogen peroxide was thereafter selected as the dose for co-treatment with melatonin. Melatonin alone had no adverse effects on ASCs. Co-treatment of ASCs with melatonin in the presence of hydrogen peroxide protected ASCs from cell death in a dose-dependent manner, and afforded maximal protection at $100{\mu}M$ (n=4, one-way analysis of variance P<0.001). Melatonin co-treated ASCs displayed significantly fewer apoptotic cells, as demonstrated by condensed and fragmented nuclei under fluorescence microscopy. Conclusions Melatonin possesses cytoprotective properties against oxidative stress in human ASCs and might be a useful adjunct in fat grafting and cell-assisted lipotransfer.

Effect of Stem Cell Transplantation on Pain Behavior and Locomotor Function in Spinal Cord Contusion Model

  • Park, Hea-Woon;Kim, Su-Jeong;Cho, Yun-Woo;Hwang, Se-Jin;Lee, Won-Yub;Ahn, Sang-Ho;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • 제22권3호
    • /
    • pp.79-85
    • /
    • 2010
  • Purpose: Many trials for new therapeutic approaches such as stem cell-based transplantation have been conducted to improve the repair and regeneration of injured cord tissue and to restore functions following spinal cord injury (SCI) in animals and humans. Adipose tissue-derived stromal cells (ATSCs) have multi-lineage potential to differentiate into cells with neuron-like morphology. Most studies of stem cell transplantation therapy after SCI are focused on cellular regeneration and restoration of motor function, but not on unwanted effects after transplantation such as neuropathic pain. This study was focused on whether transplantation of ATSCs could facilitate or attenuate hindpaw pain responses to heat, cold and mechanical stimulation, as well as on improvement of locomotor function in a rat with SCI. Methods: A spinal cord injury rat model was produced using an NYU impactor by dropping a 10 g rod from a height of 25 mm on to the T9 segment. Human ATSCs (hATSCs; approximately $5{\times}10^5$ cells) or DMEM were injected into the perilesional area 9 days after the SCI. After transplantation, hindpaw withdrawal responses to heat, cold and mechanical allodynia were measured over 7 weeks. Motor recovery on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and on the inclined plane test were also evaluated. Results: The present study demonstrated that increased hindpaw withdrawal responses to cold allodynia was observed in both groups after transplantation, but the development of cold-induced allodynia in the hATSC transplantation group was significantly larger than in the control group. The difference between the two groups in locomotor functional improvement after SCI was also significant. Conclusion: Careful consideration not only of optimal functional benefits but also of unintended side effects such as neuropathic pain is necessary before stem cell transplantation therapy after SCI.

Feline adipose tissue-derived mesenchymal stem cells pretreated with IFN-γ enhance immunomodulatory effects through the PGE2 pathway

  • Park, Seol-Gi;An, Ju-Hyun;Li, Qiang;Chae, Hyung-Kyu;Park, Su-Min;Lee, Jeong-Hwa;Ahn, Jin-Ok;Song, Woo-Jin;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • 제22권2호
    • /
    • pp.16.1-16.13
    • /
    • 2021
  • Background: Preconditioning with inflammatory stimuli is used to improve the secretion of anti-inflammatory agents in stem cells from variant species such as mouse, human, and dog. However, there are only few studies on feline stem cells. Objectives: This study aimed to evaluate the immune regulatory capacity of feline adipose tissue-derived (fAT) mesenchymal stem cells (MSCs) pretreated with interferon-gamma (IFN-γ). Methods: To assess the interaction of lymphocytes and macrophages with IFN-γ-pretreated fAT-MSCs, mouse splenocytes and RAW 264.7 cells were cultured with the conditioned media from IFN-γ-pretreated MSCs. Results: Pretreatment with IFN-γ increased the gene expression levels of cyclooxygenase-2, indoleamine 2,3-dioxygenase, hepatocyte growth factor, and transforming growth factor-beta 1 in the MSCs. The conditioned media from IFN-γ-pretreated MSCs increased the expression levels of M2 macrophage markers and regulatory T-cell markers compared to those in the conditioned media from naive MSCs. Further, prostaglandin E2 (PGE2) inhibitor NS-398 attenuated the immunoregulatory potential of MSCs, suggesting that the increased PGE2 levels induced by IFN-γ stimulation is a crucial factor in the immune regulatory capacity of MSCs pretreated with IFN-γ. Conclusions: IFN-γ pretreatment improves the immune regulatory profile of fAT-MSCs mainly via the secretion of PGE2, which induces macrophage polarization and increases regulatory T-cell numbers.

BALB/c 마우스에서 동종 지방유래 기질세포가 창상치유에 미치는 영향 (Effect of Allogenic Adipose-derived Stromal Cells on Wound Healing in BALB/c Mice)

  • 윤정원;임진수;김정남;유결
    • Archives of Plastic Surgery
    • /
    • 제37권4호
    • /
    • pp.323-328
    • /
    • 2010
  • Purpose: Adipose-derived stromal cells (ADSCs) are multipotent cells that have been found to promote wound healing through the process of angiogenesis and reepithelialization. Generally, it is well known that the antigenicity of ADSCs doesn't affect stem cell therapy. In this study, we investigated the effect of allogeneic ADSCs in the wound healing process by applying allogeneic ADSCs on the wound healing splint model of mice. Methods: Adipose tissue was harvested from the epididymal fat pads of BALB/c and C57BL/6 mice. Twenty four mice BALB/c were divided into three groups; control, isogeneic, and allogeneic groups. Two full thickness defects with 6 mm diameters were created on the back of BALB/c mice. $1{\times}10^6$ ADSCs from BALB/c mice were applied on the isogeneic group. In the allogeneic group, ADSCs from the C57BL/6 mice were applied. No cells were applied to the control group. The sizes of the wounds were evaluated in 3, 5, 7, 10, and 14 days after the wounds were applied, and tissues were harvested in 7 and 14 days for histological analysis. Results: Wound healing rates had showed significant increase in 10, and 14 days when the isogeneic group was compared to the control group, but the allogeneic group showed significantly decrease compared to the isogeneic group (p<0.05). Histological scores in the isogeneic group were significantly high, but significantly lower in the allogeneic group when compared to the isogeneic group in 2 weeks (p<0.05). In the isogeneic group, thick inflammatory cell infiltration with abundant capillaries were observed in 1 week, and thick epithelium with many large capillaries were observed in 2 weeks. Conclusion: When isogeneic ADSCs were applied to wounds, they presented a faster wound healing rate compared to controls and the allogeneic group. Unlike general stem cell therapy, these findings suggest that cell therapy targeted at enhancing wound healing may benefit from the use of ADSCs with identical antigenicity, as opposed to allogeneic or xenogenic ADSCs.

백서의 두개골 결손 모델에 있어 지방유래 줄기세포가 탈회골의 골유도에 미치는 영향 (Effect of Murine Adipose Derived Stem Cell(ADSC) on Bone Induction of Demineralized Bone Matrix(DBM) in a Rat Calvarian Defect Model)

  • 허찬영;이은혜;서석진;은석찬;장학;백롱민;민경원
    • Archives of Plastic Surgery
    • /
    • 제35권6호
    • /
    • pp.631-636
    • /
    • 2008
  • Purpose: Adipose tissue-derived stem cells(ADSC) has an osteoconductive potential and demineralized bone matrix(DBM) is an osteoinductive material. A combination of DBM and ADSC wound probably create osteoinductive properties. The purpose of this study is to determine the effect of the combination of DBM and ADSC mixture on healing of rat calvarial defect. Methods: Thirty adult male Sprague-Dawley rats were randomized into 3 groups(n=10) as 1) Control, 2) DBM alone, 3) DBM with ADSC mixture. DBM with ADSC mixture group has had a 3-day preculture of ADSC from groin fat pad. An 6 mm critical size circular calvarial defect was made in each rat. Defect was implanted with DBM alone or DBM with ADSC mixture. Control defect was left unfilled. 6 and 12 weeks after the implantation, the rats were sacrificed and the defects were evaluated by histomorphometric and radiographical studies. Results: Histomorphometric analysis revealed that DBM with ADSC mixture group showed significantly higher bone formation than DBM alone group(p<0.05). Although radiographs from DBM alone group and DBM with ADSC group revealed similar diffuse radiopaque spots dispersed throughout the defect. Densitometric analysis of calvarial defect revealed DBM with ADSC mixture group significantly higher bone formation than DBM alone(p<0.05). There was correlation of densitometry with new bone formation(Spearman's correlation of coefficient=0.804, 6 weeks, 0.802, 12 weeks). Conclusion: The DBM with ADSC mixture group showed the best healing response and the osteoinductive properties of DBM were accelerated with ADSC mixture. It will be clinically applicable that DBM and ADSC mixture in plastic and reconstructive surgery, such as alveolar cleft and congenital facial deformities that bone graft should be required.

The Expression of Immunomodulation-Related Cytokines and Genes of Adipose- and Bone Marrow-Derived Human Mesenchymal Stromal Cells from Early to Late Passages

  • Mun, Chin Hee;Kang, Mi-Il;Shin, Yong Dae;Kim, Yeseul;Park, Yong-Beom
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.771-779
    • /
    • 2018
  • BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent stem cells that can differentiate into several cell types. In addition, many studies have shown that MSCs modulate the immune response. However, little information is currently available regarding the maintenance of immunomodulatory characteristics of MSCs through passages. Therefore, we investigated and compared cytokine and gene expression levels from adipose (AD) and bone marrow (BM)-derived MSCs relevant to immune modulation from early to late passages. METHODS: MSC immunophenotype, growth characteristics, cytokine expressions, and gene expressions were analyzed. RESULTS: AD-MSCs and BM-MSCs had similar cell morphologies and surface marker expressions from passage 4 to passage 10. Cytokines secreted by AD-MSCs and BM-MSCs were similar from early to late passages. AD-MSCs and BM-MSCs showed similar immunomodulatory properties in terms of cytokine secretion levels. However, the gene expressions of tumor necrosis factor-stimulated gene (TSG)-6 and human leukocyte antigen (HLA)-G were decreased and gene expressions of galectin-1 and -3 were increased in both AD- and BM-MSCs with repeated passages. CONCLUSION: Our study showed that the immunophenotype and expression of immunomodulation-related cytokines of AD-MSCs and BM-MSCs immunomodulation through the passages were not significantly different, even though the gene expressions of both MSCs were different.

Icariside II Promotes the Differentiation of Adipose Tissue-Derived Stem Cells to Schwann Cells to Preserve Erectile Function after Cavernous Nerve Injury

  • Zheng, Tao;Zhang, Tian-biao;Wang, Chao-liang;Zhang, Wei-xing;Jia, Dong-hui;Yang, Fan;Sun, Yang-yang;Ding, Xiao-ju;Wang, Rui
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.553-561
    • /
    • 2018
  • Icariside II (ICA II) is used in erectile dysfunction treatment. Adipose tissue-derived stem cells (ADSCs) are efficient at improving erectile function. This study aimed to explore the action mechanism of ADSCs in improving erectile function. ADSCs were isolated from the adipose tissues of rats. Cell proliferation was determined using the Cell Counting Kit-8 (CCK-8) assay. The expressions of mRNA and protein were determined separately through qRT-PCR and western blot. The endogenous expressions of related genes were regulated using recombinant plasmids and cell transfection. A Dual-Luciferase Reporter Assay was performed to determine the interaction between miR-34a and STAT3. Rat models with bilateral cavernous nerve injuries (BCNIs) were used to assess erectile function through the detection of mean arterial pressure (MAP) and intracavernosal pressure (ICP). ICA II promoted ADSCs' proliferation and differentiation to Schwann cells (SCs) through the inhibition of miR-34a. Suppressed miR-34a promoted the differentiation of ADSCs to SCs by upregulating STAT3. ICA II promoted the differentiation of ADSCs to SCs through the miR-34a/STAT3 pathway. The combination of ICA II and ADSCs preserved the erectile function of the BCNI model rats. ADSCs treated with ICA II markedly preserved the erectile function of the BCNI model rats, which was reversed through miR-34a overexpression. ICA II promotes the differentiation of ADSCs to SCs through the miR34a/STAT3 pathway, contributing to erectile function preservation after the occurrence of a cavernous nerve injury.

사람의 지방 및 제대에서 유래된 유사중간엽 줄기세포로부터 심근세포로의 분화 유도 (Cardiomyogenic Potential of Human Adipose Tissue and Umbilical Cord Derived-Mesenchymal Like Stem Cells)

  • 박세아;강현미;김은수;김진영;김해권
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제34권4호
    • /
    • pp.239-252
    • /
    • 2007
  • 목 적: 사람의 HAD와 HUC를 심근세포로 분화 유도하고자 하였다. 연구방법: 사람의 HAD와 HUC를 분리하여 5-azacytidine을 24시간 처리하고 여러 가지 BMP와 FGF을 첨가하여 배양하였다. 또한 HUC은 BMP와 FGF와 함께 activin A 또는 TGF-$\beta$1 또는 Wnt inhibitor를 첨가하여 배양한 후 심근세포 특이 유전자의 발현을 조사하였다. 결 과: HAD를 5-azacytidine 처리하고 기본배양액에서 4주 동안 배양하였을 때 TnT 유전자가 새로이 발현하였으며 Cmlc1과 kv4.3의 발현 양이 증가하였다. 5-azacytidine 처리 후에 BMP-4와 함께 FGF-4 (B4/F4) 또는 FGF-8 (B4/F8)을 첨가하여 배양하였을 때는 $\beta$-MHC 유전자 발현이 새로이 유도되었으며, Cmlc1, TnT, TnI 그리고 Kv4.3 유전자 발현 양이 더 많이 증가하였다. HUC은 5-azacytidine 및 BMP와 FGF 처리에 의해 유전자 발현 변화가 없었다. 그러나 BMP와 FGF와 함께 activin A 또는 TGF-$\beta$1을 첨가하여 배양하였을 때, BMP-2와 FGF-8 (B2/F8)을 첨가하여 배양한 세포에서 $\beta$-MHC 발현이 새로이 유도되었으며 $\alpha$-CA, TnT 그리고 Kv4.3 유전자의 발현이 증가하였다. 또한 BMP와 FGF와 함께 Wnt inhibitor를 처리하여 1주 동안 배양하였을 때 Cinlc1 유전자 발현이 새로이 유도되었으며 $\alpah$-CA, TnT, TnI 그리고 Kv4.3의 발현이 증가되었다. 결 론: HAD는 BMP와 FGF 처리에 의해 심근세포 특이 유전자의 발현증가를 유도할 수 있었으며 HUC는 BMP와 FGF와 함께 activin A 또는 TGF-$\beta$1 또는 Wnt inhibitor를 처리함으로써 심근세포 특이 유전자의 발현증가를 유도할 수 있었다. 따라서 HAD와 HUC는 심장질환 치료를 목적으로 하는 세포 치료에 이용될 수 있을 것으로 사료된다.

하이드로젤 지지체 기반 3차원 환경에서 개 간엽줄기세포의 분화능 분석 (Differentiation potential of canine mesenchymal stem cells on hydrogel scaffold-based three-dimensional environment)

  • 구나연;박미정;이지현;변정수;정다운;조인수;차상호
    • 대한수의학회지
    • /
    • 제58권4호
    • /
    • pp.211-217
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy. Physiological cell environment not only connects cells to each other, but also connects cells to the extracellular matrix that provide mechanical support, thus exposing the entire cell surface and activating signaling pathways. Hydrogel is a polymeric material that swells in water and maintains a distinct 3-dimensional (3D) network structure by cross linking. In this study, we investigated the optimized cellular function for canine adipose tissue-derived MSCs (cAD-MSCs) using hydrogel. We observed that the expression levels of Ki67 and proliferating cell nuclear antigen, which are involved in cell proliferation and stemness, were increased in transwell-hydrogel (3D-TN) compared to the transwell-normal (TN). Also, transforming growth factor-${\beta}1$ and SOX9, which are typical bone morphogenesis-inducing factors, were increased in 3D-TN compared to the TN. Collagen type II alpha 1, which is a chondrocyte-specific marker, was increased in 3D-TN compared to the TN. Osteocalcin, which is a osteocyte-specific marker, was increased in 3D-TN compared to the TN. Collectively, preconditioning cAD-MSCs via 3D culture systems can enhance inherent secretory properties that may improve the potency and efficacy of MSCs-based therapies for bone regeneration process.