• 제목/요약/키워드: Adipose tissue-derived stem cells

검색결과 99건 처리시간 0.023초

Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells

  • Park, Hannara;Kim, Jin Soo;Oh, Eun Jung;Kim, Tae Jung;Kim, Hyun Mi;Shim, Jin Hyung;Yoon, Won Soo;Huh, Jung Bo;Moon, Sung Hwan;Kang, Seong Soo;Chung, Ho Yun
    • 대한두개안면성형외과학회지
    • /
    • 제19권3호
    • /
    • pp.181-189
    • /
    • 2018
  • Background: Autogenous bone grafts have several limitations including donor-site problems and insufficient bone volume. To address these limitations, research on bone regeneration is being conducted actively. In this study, we investigate the effects of a three-dimensionally (3D) printed polycaprolactone (PCL)/tricalcium phosphate (TCP) scaffold on the osteogenic differentiation potential of adipose tissue-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMSCs). Methods: We investigated the extent of osteogenic differentiation on the first and tenth day and fourth week after cell culture. Cytotoxicity of the 3D printed $PCL/{\beta}-TCP$ scaffold was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, prior to osteogenic differentiation analysis. ADSCs and BMSCs were divided into three groups: C, only cultured cells; M, cells cultured in the 3D printed $PCL/{\beta}-TCP$ scaffold; D, cells cultured in the 3D printed $PCL/{\beta}-TCP$ scaffold with a bone differentiation medium. Alkaline phosphatase (ALP) activity assay, von Kossa staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting were performed for comparative analysis. Results: ALP assay and von Kossa staining revealed that group M had higher levels of osteogenic differentiation compared to group C. RT-PCR showed that gene expression was higher in group M than in group C, indicating that, compared to group C, osteogenic differentiation was more extensive in group M. Expression levels of proteins involved in ossification were higher in group M, as per the Western blotting results. Conclusion: Osteogenic differentiation was increased in mesenchymal stromal cells (MSCs) cultured in the 3D printed PCL/TCP scaffold compared to the control group. Osteogenic differentiation activity of MSCs cultured in the 3D printed PCL/TCP scaffold was lower than that of cells cultured on the scaffold in bone differentiation medium. Collectively, these results indicate that the 3D printed PCL/TCP scaffold promoted osteogenic differentiation of MSCs and may be widely used for bone tissue engineering.

자가기질혈관분획을 이용한 수지골 결손 환자의 치료 (Treatment of Phalangeal Bone Defect Using Autologous Stromal Vascular Fraction from Lipoaspirated Tissue)

  • 정태원;지이화;김덕우;동은상;윤을식
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.438-444
    • /
    • 2011
  • Purpose: Adipose-derived stromal cells (ASCs) are readily harvested from lipoaspirated tissue or subcutaneous adipose tissue fragments. The stromal vascular fraction (SVF) is a heterogeneous set of cell populations that surround and support adipose tissue, which includes the stromal cells, ASCs, that have the ability to differentiate into cells of several lineages and contains cells from the microvasculature. The mechanisms that drive the ASCs into the osteoblast lineage are still not clear, but the process has been more extensively studied in bone marrow stromal cells. The purpose of this study was to investigate the osteogenic capacity of adipose derived SVF cells and evaluate bone formation following implantation of SVF cells into the bone defect of human phalanx. Methods: Case 1 a 43-year-old male was wounded while using a press machine. After first operation, segmental bone defects of the left 3rd and 4th middle phalanx occurred. At first we injected the SVF cells combined with demineralized bone matrix (DBM) to defected 4th middle phalangeal bone lesion. We used P (L/DL)LA [Poly (70L-lactide-co-30DL-lactide) Co Polymer P (L/DL)LA] as a scaffold. Next, we implanted the SVF cells combined with DBM to repair left 3rd middle phalangeal bone defect in sequence. Case 2 was a 25-year-old man with crushing hand injury. Three months after the previous surgery, we implanted the SVF cells combined with DBM to restore right 3rd middle phalangeal bone defect by syringe injection. Radiographic images were taken at follow-up hospital visits and evaluated radiographically by means of computerized analysis of digital images. Results: The phalangeal bone defect was treated with autologous SVF cells isolated and applied in a single operative procedure in combination with DBM. The SVF cells were supported in place with mechanical fixation with a resorbable macroporous sheets acting as a soft tissue barrier. The radiographic appearance of the defect revealed a restoration to average bone density and stable position of pharyngeal bone. Densitometric evaluations for digital X-ray revealed improved bone densities in two cases with pharyngeal bone defects, that is, 65.2% for 4th finger of the case 1, 60.5% for 3rd finger of the case 1 and 60.1% for the case 2. Conclusion: This study demonstrated that adipose derived stromal vascular fraction cells have osteogenic potential in two clinical case studies. Thus, these reports show that cells from the SVF cells have potential in many areas of clinical cell therapy and regenerative medicine, albeit a lot of work is yet to be done.

Diphlorethohydroxycarmalol of Ishige okamurae and Caffeine Modified the Expression of Extracellular Fibrillars during Adipogenesis of Mouse Subcutaneous Adipose Derived Stem Cell

  • Jeon, Younmi;Song, Siyoung;Kim, Hagju;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권3호
    • /
    • pp.275-287
    • /
    • 2013
  • Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues.

Antioxidant Effect of Annexin A-1 Induced by Low-dose Ionizing Radiation in Adipose-derived Stem Cells

  • You, Ji-Eun;Lee, Seung-Wan;Kim, Keun-Sik;Kim, Pyung-Hwan
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.249-255
    • /
    • 2020
  • Radiation therapy is one of the primary options for the treatment of malignant tumors. Even though it is an effective anti-cancer treatment, it can cause serious complications owing to radiation-induced damage to the normal tissue around the tumor. It was recently reported that normal stem cell response to the genotoxic stress of ionizing radiation can boost the therapeutic effectiveness of radiation by repairing damaged cells. Therefore, we focused on annexin A-1 (ANXA1), one of the genes induced by low-dose irradiation, and assessed whether it can protect adipose-derived stem cells (ADSCs) against oxidative stress-induced damage caused by low-dose irradiation and improve effectively cell survival. After confirming ANXA1 expression in ADSCs transfected with an ANXA1 expression vector, exposure to hydrogen peroxide (H2O2) was used to mimic cellular damage induced by a chronic oxidative environment to assess cell survival under oxidative conditions. ANXA1-transfected ADSCs demonstrated that increased viability compared with un-transfected cells and exhibited enhanced anti-oxidative properties. Taken together, these results suggest that ANXA1 could be used as a potential therapeutic target to improve the survival of stem cells after low-dose radiation treatment.

협부지방에서 성체 줄기세포의 분리와 골모 세포로의 분화 (DIFFERENTIATION OF ADULT STEM CELL DERIVED FROM BUCCAL FAT PAD INTO OSTEOBLAST)

  • 표성운;박장우;이일규;김창현
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권6호
    • /
    • pp.524-529
    • /
    • 2006
  • For the repairing of bone defect, autogenous or allogenic bone grafting remains the standard. However, these methods have numerous disadvantages including limited amount, donor site morbidity and spread of diseases. Tissue engineering technique by culturing stem cells may allow for a smart solution for this problem. Adipose tissue contains mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from buccal fat pad and differentiate them into osteoblast and are to examine the bone induction capacity. Buccal fat-derived cells (BFDC) were obtained from human buccal fat pad and cultured. BFDC were analyzed for presence of stem cell by immunofluorescent staining against CD-34, CD-105 and STRO-1. After BFDC were differentiated in osteogenic medium for three passages, their ability to differentiate into osteogenic pathway were checked by alkaline phosphatase (ALP) staining, Alizarin red staining and RT-PCR for osteocalcin (OC) gene expression. Immunofluorescent and biochemical assays demonstrated that BFDC might be a distinguished stem cells and mineralization was accompanied by increased activity or expression of ALP and OC. And calcium phosphate deposition was also detected in their extracelluar matrix. The current study supports the presence of stem cells within the buccal fat pad and the potential implications for human bone tissue engineering for maxillofacial reconstruction.

Analysis of Molecular Expression in Adipose Tissue-Derived Mesenchymal Stem Cells : Prospects for Use in the Treatment of Intervertebral Disc Degeneration

  • Jin, Eun-Sun;Min, Joongkee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권4호
    • /
    • pp.207-212
    • /
    • 2013
  • Objective : Recent studies have shown encouraging progress toward the use of autogenic and allogenic mesenchymal stem cells (MSCs) to arrest, or even lead to partial regeneration in, intervertebral disc (IVD) degeneration. However, this technology is still in its infancy, and further development is required. The aim of this study was to analyze whether rat adipose-derived mesenchymal stem cells (ADMSC) can differentiate towards IVD-like cells after treatment with transforming growth factor ${\beta}3$ (TGF-${\beta}3$) in vitro. We also performed quantitative analysis of gene expression for ADMSC only, ADMSCs treated with TGF-${\beta}3$, and co-cultured ADMSCs treated with TGF-${\beta}3$. Methods : ADMSCs were sub-cultured to homogeneity and used in fluorocytometry assays for CD11, CD45, and CD90/Thy1. ADMSCs were differentiated in spheroid culture towards the chondrogenic lineage by the presence of TGF-${\beta}3$, dexamethasone, and ascorbate. We also co-cultured pure ADMSCs and nucleus pulposus cells in 24-well plates, and performed immunohistochemical staining, western blotting, and RT-PCR for quantitative analysis of gene expression. Results : Results of fluorocytometry were positive for CD90/Thy1 and negative for CD11 and CD45. TGF-${\beta}3$-mediated induction of ADMSCs led to the expression of the differentiation markers of intervertebral disc-like cells, such as aggrecan, collagen II, and sox-9. Co-cultured ADMSCs treated with TGF-${\beta}3$ showed higher expression of differentiation markers and greater extracellular matrix production compared with ADMSCs treated with TGF-${\beta}3$ alone. Conclusion : ADMSC treated with TGF-${\beta}3$ may be an attractive source for regeneration therapy in degenerative IVD. These findings may also help elucidate the pathologic mechanism of MSC therapy in the degeneration of IVD in vivo.

Mesenchymal stem cells and osteogenesis

  • Jung, Cho-Rok;Kiran, Kondabagil R.;Kwon, Byoung S.
    • IMMUNE NETWORK
    • /
    • 제1권3호
    • /
    • pp.179-186
    • /
    • 2001
  • Bone marrow stroma is a complex tissue encompassing a number of cell types and supports hematopiesis, differentiation of erythreid, nyel and lymphoid lineages, and also maintains undifferentiated hematopoietic stem cells. Marrow-derived stem cells were composed of two populations, namely, hematopoietic stem cells that can differentiate into blood elements and mesenchymal stem cells that can give rise to connective tissues such as bone, cartilage, muscle, tendon, adipose and stroma. Differentiation requires environmental factors and unique intracellular signaling. For example, $TGF-{\beta}$ or BMP2 induces osteoblastic differentiation of mesenchymal stem are very exciting. However, the intrinsic controls involved in differentiation of stem cells are yet to be understood properly in order to exploit the same. This review presents an overview of the recent developments made in mesenchymal stem cell research with respect to osteogenesis.

  • PDF

지방유래줄기세포의 지방분화과정에서 활성산소가 미치는 영향 (Role of Reactive Oxygen Species in the Adipogenesis of Adipose-derived Stem Cells)

  • 장학;민경희;박영인;김요한;민경원
    • Archives of Plastic Surgery
    • /
    • 제38권2호
    • /
    • pp.131-134
    • /
    • 2011
  • Purpose: Stem cells continue to receive research attention in the clinical fields, and adipose-derived stem cells (ADSCs) have been shown to be a good source raw material. Many plastic surgeons are researching the ADSC adipogenesis with a view of conducting clinical trials, and many attempts have been made to identify the factors that promote the adipogenesis of ADSCs, but comparatively few correlation studies have been undertaken to explore the relation between reactive oxygen species (ROS) and the ADSC adipogenesis. We undertook this study is to investigate the effects of ROS on ADSC adipogenesis. Methods: ADSCs were isolated and cultured from abdominal adipose tissue, and cultured in different media; 1) DMEM(control), 2) adipogenesis induction culture medium, 3) adipogenesis induction culture medium with ROS ($20{\mu}M/50{\mu}M\;H_2O_2$), 4) adipogenesis induction culture medium containing ROS ($20{\mu}M/50{\mu}M\;H_2O_2$) and antioxidant ($10{\mu}M/20{\mu}M$ Deferoxamine). We compared adipogenesis in these different media by taking absorbance measurements after Oil-Red O staining every 5 days. Results: After culturing for 20 days, significant differences were observed between these various culture groups. Absorbance results showed significantly more adipogenesis had occurred in media containing adipogenesis induction culture medium and $H_2O_2$ (in a $H_2O_2$ dose-dependently manner) than in media containing adipogenesis induction culture medium and no $H_2O_2$ (p<0.001). Furthermore, in media containing adipogenesis induction culture medium, $H_2O_2$, and antioxidant, absorbance results were significantly lower than in adipogenesis induction culture medium and $H_2O_2$ (p<0.001). Conclusion: These findings suggest that ROS promote the adipogenesis of ADSCs. We suggests that ROS could be used in the adipose tissue engineering to improve fat cell differentiation and implantable fat tissue organization.

세 종류 줄기세포의 특성 분석과 지방유래 줄기세포의 심근세포로의 분화 (Characterization Analysis for Cardiogenic Potential of Three Human Adult Stem Cells)

  • 박세아;강현미;김은수;김진영;김해권
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.167-177
    • /
    • 2007
  • 본 연구에서는 사람의 지방조직(human adipose tissue-derived stem cells, HAD), 탯줄(human umbilical cordderived stem cells, HUC), 그리고 양막(human amnion-derived stem cells, HAM)유래 줄기세포를 분리하여 세포의 형태 및 성장속도를 비교하고, 역전사 중합효소 연쇄반응과 면역세포화학 염색법을 이용하여 유전자와 단백질 발현을 비교 분석하였다. 또한 지방유래 줄기세포를 이용하여 심장근육세포로의 분화를 유도하였다. 본 연구 결과, 탯줄과 양막유래 줄기세포의 형태는 매우 유사하였으며, 지방유래 줄기세포의 형태는 다른 것으로 나타났다. 분열시간은 탯줄유래 줄기세포가 가장 빨랐으나 총 분열 횟수는 양막유래 줄기세포와 같았으며, 지방유래 줄기세포의 총 분열횟수가 가장 많았다. 세 종류 줄기세포의 유전자와 단백질 발현은 비슷한 양상을 나타냈다. 지방세포, 골세포, 연골세포로의 분화 유도 결과 세 종류의 줄기세포 모두 분화 유도되었다. 또한, 심장세포 특이 유전자의 발현 분석 결과 세 종류의 줄기세포에서 유사한 발현 양상을 나타냈다. 이 중 지방유래 줄기세포를 24시간 동안 $10\;{\mu}M$ 5-azacytidine 처리 후 기본 배양액에서 4주 동안 배양하거나 또는 5-azacytidine 처리 후 bone morphogenic protein-2(BMP-2)와 fibroblast growth factor-10(FGF-10) 또는 BMP-4와 FGF-4 또는 BMP-4와 FGF-8이 첨가된 배양액으로 4주 동안 배양하여 심근세포로의 분화를 유도하였다. 분화 유도 후 심장세포 특이 유전자 발현을 분석 결과 cardiac myosin light chain-1(Cmlc-1)과 L-type calcium channel ${\alpha}1C$ subunit(${\alpha}1C$) 유전자의 발현이 증가하였다. 그러나 troponin T(TnT), troponin I(TnI) 그리고 potassium channel Kv4.3 subunit (Kv4.3) 유전자의 발현은 증가하지 않았다. 본 연구 결과, 지방, 탯줄 및 양막유래 줄기세포는 특성이 매우 유사한 것으로 나타났으며, 심장 질환 치료를 목적으로 하는 세포 치료에 이용될 수 있을 것으로 사료된다. 또한, 적절한 배양조건 하에서 성장인자와 cytokine들을 처리하여 심장세포로의 분화 유도가 이루어진다면 임상적용에 유용한 세포로 사용될 수 있을 것으로 사료된다.

  • PDF