• Title/Summary/Keyword: Adipocyte P2

Search Result 155, Processing Time 0.022 seconds

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

Expression Profiles of Triacylglycerol Biosynthesis Genes on Fattening Stages in Hanwoo (한우 비육기간 중 중성지방 생합성 관련 유전자의 발현양상)

  • Kim, Nam-Kuk;Kim, Sung-Kon;Heo, Kang-Nyeong;Yoon, Duhak;Lee, Chang-Soo;Im, Seok-Ki;Park, Eung-Woo
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.293-300
    • /
    • 2008
  • Muscle fat content including intramuscular fat content(IMF) is the most important parameter in meat quality of cattle. Triacylglycerol is the major component of fat and is found in adipocyte and skeletal muscle. In present study, we carried out the determined of triacylglycerol contents and mRNA expression patterns of genes related with triacylglycerol biosynthesis such as ACSS2, GPAT, MGAT and DGAT in Hanwoo longissimus muscle using the real-time PCR. The triacylglycerol contents were continuously increased during the fattening stages. Interestingly, the contents of triacylglycerol were 7.4 fold higher(0.34 vs. 2.51, P<0.01) in 27 months old group than 12 months old group. The mRNA levels of ACSS2, GPAT and DGAT genes were also increased during fattening stages, whereas that of MGAT gene did not show difference among the stages. Thus, these results suggested that increasing of the triacylglycerol contents in longissimus muscle during fattening stages may be related with increased expressions of triacylglycerol biosynthesis genes(ACSS2, GPAT and DGAT). These results will be helpful to understand the mechanism of muscle fat deposition in skeletal muscle.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Expression Analysis of Galectin-1 from Fat in Berkshire Pigs

  • Jung, Won Yong;Cho, Eun Seok;Kwon, Eun Jung;Park, Da Hye;Chung, Ki Hwa;Kim, Chul Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.167-176
    • /
    • 2008
  • Galectins are a group of animal lectins consisting of galectin-type carbohydrate recognition domains (CRD) with relatively minor domains. The biological properties of galectins include the regulation of inflammation, intercellular adhesion, cell differentiation and cell death. The diverse kinds of galectin suggest variety in their biological roles. Galectin-1 is released during adipocyte differentiation and is associated with fat which is one of the important factors for meat quality. To verify expression level, a 0.5 kb clone of galectin-1 was obtained from cDNA prepared from back fat tissue of a Sancheong Berkshire pig with good quality meat, and the galectin-1 gene identified. The deduced amino acid sequence of the galectin-1 gene was compared with those obtained from other species. By using RT-PCR and Real time-PCR, an attempt was made to determine the expression level of galectin-1 and to compare with various tissues (tenderloin and back fat) taken from pigs in different groups. Grouping of pigs was based on growth-stage (weighing 60, 80, and 110 kg) and the sub-speciation (Yorkshire and Sancheong Berkshire pigs). We attempted to determine influences of pig species, growth stages and tissue variations on the expression level of the galectin-l gene and it was revealed that the expression pattern of the galectin-1 gene was significantly different (p<0.01 or p<0.05). Galectin-1 genes were expressed more highly in the back fat tissues of pigs weighing 110 kg than in those weighing 60 kg or 80 kg. However, the lowest expression was seen in the tenderloin tissues of pigs weighing 110 kg. Sancheong Berkshire pigs showed higher expression of the galectin-1 gene compared to Yorkshire pigs. Accordingly, it is considered that the expression pattern of the galectin-1 gene influences the growth of back fat tissues and the pig speciation relationship. Previous studies suggested that different expression of galectin-1 genes represents variety among the breeds and is closely related to fat tissue growth, conjugation and catabolism. Further, this study suggests that the expression of galectin-1 at a specific growth stage and tissue contributes significantly to the overall meat quality of Sancheong Berkshire pigs.

Effect of hot water and ethanol extracts from Nelumbo nucifera Gaertner flower on lipid accumulation and reactive oxygen species (ROS) production in adipogenesis of 3T3-L1 cells (3T3-L1 세포분화 중 지방축적 및 ROS 생성에 대한 연화 열수 및 에탄올 추출물의 효과)

  • Oh, Ji-Won;Lee, Jin-Ha;Lee, Ok-Hwan;Kim, Kye-Hoon;Kim, Hey-Ran;Lee, Hyo-Ku
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.744-750
    • /
    • 2015
  • The present study was designed to investigate the effects of hot water and ethanol extracts of Nelumbo nucifera Gaertner flower on lipid accumulation and reactive oxygen species (ROS) production during adipogenesis in 3T3-L1 cells. 3T3-L1 preadipocytes were treated with both hot water and ethanol extracts for up to 8 days following standard induction of differentiation. Regarding anti-adipogenic activity, compared with the control, the hot water and ethanol extracts significantly inhibited lipid accumulation (37.4 and 66.6%, respectively) and ROS production (46.4 and 46.8%, respectively) during adipogenesis in 3T3-L1 cells. Treatment with hot water and ethanol extracts significantly inhibited mRNA expression of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$), thereby reducing the mRNA expression of adipocyte-specific fatty acid binding protein (aP2). Moreover, both the extracts significantly inhibited mRNA expression of NADPH oxidase (NOX4). Overall, our research suggests that N. nucifera Gaertner flower extracts might be a valuable source of bioactive compounds that exhibit anti-adipogenic activity and could have applications in the field of medicine and food industry.

Effects of Polygonatum sibiricum rhizome extract on lipid and energy metabolism in high-fat diet-induced obese mice (고지방 식이 유도 비만 마우스 모델에서 황정 추출물의 지방질 및 에너지 대사 관련 유전자에 대한 효능 연구)

  • Jeon, Woo-Jin;Kim, Ji-Young;Oh, Ik-Hoon;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.192-202
    • /
    • 2017
  • In this study, factors involved in lipid and energy metabolism following treatment with ethanolic extract of the Polygonatum sibiricum rhizome (ID1216) were evaluated in high-fat diet-induced obese mice. ID1216-treated mice showed a significant reduction in weight gain compared to non-treated mice. ID1216 treatment increased the protein levels of AMP-dependent protein kinase, sirtuin1, peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1-${\alpha}$ ($PGC1{\alpha}$), peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and uncoupling proteins in the adipose tissue, liver and muscle compared to vehicle treatment. Analysis of downstream signals of the sirtuin1 $PGC1{\alpha}$-$PPAR{\alpha}$ pathway showed that ID1216 regulates the expression of ${\beta}$-oxidation related genes such as acyl-CoA oxidase, carnitine palmitoyltransferase1, acyl-CoA dehydrogenase and adipocyte protein 2. In addition, ID1216 increased the expression of adipose triglyceride lipase. These results suggest that ID1216 has anti-obesity effects by regulating the genes involved thermogenesis, ${\beta}$-oxidation and lipolysis in a diet-induced obesity model.

A Study on Serum Leptin Values by Elisa Method in Children (ELISA법으로 측정한 소아 혈중 LEPTIN 치에 관한 연구)

  • Song, Soo-Ho;Chung, Young-Hun
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.3 no.2
    • /
    • pp.175-180
    • /
    • 2000
  • Purpose: Leptin is an adipocyte-derived blood-borne satiety factor that acts on its cognate leptin receptor in the hypothalamus, thereby regulating food intake and energy expenditure. We measured the leptin concentrations in serum of normal and obese children with human leptin ELISA kit, unlike previous study with leptin RIA kit and investigated the relationship between leptin concentrations and body mass index, gender, and age. Methods: We measured serum concentrations of leptin in 67 children who were visited to the Department of Pediatrics, Chungnam National University Hospital during the period of 5 months from February, 1999 to June, 1999. Height, weight, obesity index, and body mass index were measured in 67 subjects. Leptin values in serum were measured by sandwich ELISA method. Data analysis was done according to the obesity, body mass index, gender and age. Results: The mean concentration of leptin was $7.69{\pm}8.83\;ng/ml$ in normal children group and $36.34{\pm}18.57\;ng/ml$ in obese group. Serum leptin concentrations were significant correlation with the body mass index (p<0.01). Serum leptin concentration was significant higher in the group of over 10 years of age (p<0.01). Leptin levels showed no significant difference by gender. Conclusion: Serum leptin levels were significantly higher in obesity group than in control one, and they were correlated with body mass index and age. Measurements of leptin value by sandwich ELISA method are very useful and easily applicable to determine obesity.

  • PDF

Anti-adipogenic Effect of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans (3T3-L1 지방전구세포에서 홍국균 균사체-고체발효 원두커피 추출물의 지방축적 억제효과)

  • Lim, Yongrae;Shin, Ji-Young;Kim, Hoon;Baek, Gil-Hun;Yu, Kwang-Won;Jeong, Heon-Sang;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.624-629
    • /
    • 2014
  • Obesity is the leading metabolic disease in industrialized countries and is closely associated with coronary heart disease, hypertension, diabetes, and cancer. The objective of this study was to evaluate the anti-adipogenic effects of two roasted coffee beans, Vietnam robusta (VR) and Ethiopia Mocha Sidamo G2 (ES), as well as fermented coffee beans with Monascus ruber (MR) mycelium on differentiation of 3T3-L1 preadipocytes. Treatments with 1,000 ${\mu}g/mL$ of hot water extract from coffee beans significantly reduced intracellular lipid accumulation. In addition, VR more effectively inhibited transcription factors such as $PPAR{\gamma}$, $C/EBP{\alpha}$, FAS, and aP2 compared to ES. Further, ES fermented with MR showed more effective anti-adipogenic activity than non-fermented ES. These results suggest that VR and ES inhibit adipocyte differentiation which may contribute to their anti-adipogenic properties.

Anti-Obesity Effect of Fermented Detoxified Rhus verniciflua Vinegar Supplementation in Diet-Induced Obese Rats (무독화한 옻발효초가 고지방식이를 급여한 흰쥐에 미치는 항비만 효과)

  • Cheong, So Ra;Kim, Ranseon;Park, Yoo Kyoung;Baek, SeongYeol;Yeo, Soo-Hwan;Lee, ChoongHwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1771-1778
    • /
    • 2015
  • The study aimed to investigate the anti-obesity effects of 1% Rhus verniciflua vinegar (RV) supplementation in high-fat-diet (60% fat)-induced obese rats. A total of 50 4-wk-old male Sprague-Dawley rats were fed normal chow diet or maintained on high-fat diet (HFD) for 12 weeks to induce obesity and were then randomized into five groups as follows: normal diet+ultra-pure water (CON), HFD+ultra-pure water (OB-DW), HFD+1% acetic acid (OBAA), HFD+1% RV (OB-RV), and HFD+0.1% caffeine (OB-CF). AA was used as a control for RV, and caffeine was used as a positive control due to its weight reducing effect. After 2 months, body weight, organ and adipose tissue weights, serum lipids, hepatic lipids, adipocyte size, and cell number per spot level were analyzed. As a result, food efficiency ratio, abdominal adipose tissue weight, serum levels of total cholesterol, triacylglycerol, free fatty acids, coronary artery index, and fecal lipid were significantly reduced in the RV treatment group. In this study, we found that dietary RV improved obesity by increasing lipid excretion and reducing lipogenesis. These results suggest that RV has potential as a functional anti-obesity food.

Antioxidant Enzyme Activity and Anti-Adipogenic Effects of (-)-Epigallocatechin-3-Gallate in 3T3-L1 Cells ((-)-Epigallocatechin-3-Gallate의 3T3-L1 세포에서 항산화 효소 활성 및 지방세포 분화 억제 효과)

  • Kim, Younghwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1293-1299
    • /
    • 2017
  • Obesity contributes to the development of diseases, such as type II diabetes, hypertension, coronary heart disease, and cancer. In addition, oxidative stress caused by reactive oxygen species (ROS) is recognized widely as a contributing factor in the development of chronic diseases. This study was examined the antioxidant and anti-adipogenic activities of epigallocatechin-3-gallate (EGCG) in 3T3-L1 preadipocytes. 3T3-L1 cells were differentiated with or without EGCG for 6 days. The production of glutathione (GSH) and the activities of the antioxidant enzymes, such as glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were measured. EGCG inhibited significantly the lipid accumulation and the expression of adipogenic specific proteins including CCAAT/enhancer binding protein ${\alpha}$ and adipocyte fatty acid binding protein. The production of intracellular ROS was decreased significantly by EGCG in 3T3-L1 cells. EGCG increased the GSH production and the activities of GPx, GR, CAT, and SOD. Moreover, EGCG increased the protein expression of glutamate-cysteine ligase and heme oxygenase-1 in 3T3-L1 cells. These results suggest that EGCG increased the activity and expression of antioxidant enzymes and suppressed the lipid accumulation in 3T3-L1 cells. Therefore, the use of phytochemicals that can maintain the GSH redox balance in adipose tissue could be promising for reducing obesity.