• Title/Summary/Keyword: Adiabatic-Isothermal

Search Result 52, Processing Time 0.018 seconds

A Study on Thermohydrodynamic Turbulent Lubrication of High Speed Journal Bearing Considering Thermal Conditions on Walls (열전달 경계조건을 고려한 고속 저어널 베어링의 난류 열유체 윤활 연구)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.208-217
    • /
    • 2000
  • Turbulence in journal bearing operation is examined and the thermal variability is studied for isothermal, convective and adiabatic conditions on the walls within some degree of journal misalignment. An efficient algorithm for the solution of the coupled turbulent Reynolds and energy equations is used to examine the effects of the various factors. The calculation data of turbulent analysis are compared with those of laminar analysis. Heat convection is found to play but a small role in determining friction and load. The friction distribution patterns through the journal bearing are now different with high values at the upstream region of the bearing due to the high speed and low temperature, and a sudden decrease past the pressure maximum.

On the Galaxy Formation: Two Theories of Galaxy Formation

  • Hyun, Jong-June
    • Publications of The Korean Astronomical Society
    • /
    • v.2 no.1
    • /
    • pp.21-29
    • /
    • 1985
  • Two theories, the adiabatic and the isothermal, of galaxy formation are surveyed with regard to the current observational constraints, Some advantage of non-baryonic theory compared with the usual baryonic theory is discussed.

  • PDF

A Study on the Natural Convection from the Isothermal Square Beam Attached to an Adiabatic Plate (단열판에 부착된 등온 사각비임에서의 자연대류 열전달에 관한 연구)

  • Park, Jae-Lim;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • Steady laminar natural convection heat transfer from the isothermal square beam attached to an adiabatic plate has been studied for various inclination angles of the adiabatic plate and Rayleigh number by using Mach-Zehnder interferometer in air. As the inclination angles change, the different temperature and fluid flow field were obtained by the ascending heated fluid and the adiabatic plate. In this study, the inclination angles were $0^{\circ}$(positive & negative), $45^{\circ}$(positive & negative), and $90^{\circ}$. The maximum total mean Nusselt number value was found at a positive inclination angle ${\theta}=45^{\circ}$.

  • PDF

Dynamic Analysis of Free-Piston Stirling Engine Using Ideal Adiabatic Model (이상단열 모델에 의한 자유피스톤 스털링엔진의 동적거동 해석)

  • 변형현;최헌오;신재균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1751-1758
    • /
    • 1994
  • A new set of governing equations is derived for the dynamic analysis of the Free-Piston Stirling Engines(EPSE). Equations from the ideal adiabatic model for the thermodynamic analysis of the working fluid are incoporated with the equations of motion for the moving masses of the system, resulting in a set of nonlinear differential equations. The coupled set of equations are numerically integrated with proper intial conditions to obtain a steady state response of the engine. The proposed method is compared with the conventional method of analyzing EPSE based mainly on the ideal isothermal model. The results clearly shows the limitationsl of the conventional methods and the relative advantages of the method proposed in the present study.

Laminar Natural Convection Heat Transfer from an Isothermal Rectangular Beam Attached to Horizontal and Vertical Adiabatic Plates (수직 및 수평 단열판에 부착된 등온 사각비임에서의 자연대류 열전달)

  • 박재림;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.95-103
    • /
    • 1992
  • Laminar natural convection heat transfer from an isothermal rectangular beam attached to horizontal and vertical adiabatic plates has been studied for various aspect ratios of the beam and Grashof numbers. The local Nusselt number was increased with decreasing H/B for the constant beam width, B, and with increasing H/B for the constant beam height, H. The total mean Nusselt number of the vertical type was higher than that of horizontal type in the range of H/B.leq.0.52, but reversed in the H/B>0.52 at constant beam width. The total mean Nusselt number of the horizontal type was generally higher than that of vertical type at constant beam height. The total mean Nusselt number of the vertical type was higher than that of horizontal type in the range of H/B.leq.0.43 at constant wetted perimeter, but reversed in the H/B$\leq$0.43.

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

Combined Radiation and Natural Convection Heat Transfer in an Enclosure with a Constant Heat Flux at the Bottom (밑면에 균일 열유속이 존재하는 밀폐공간에서의 복사 - 자연대류열전달)

  • Kwon, Sun-Sok;Kwon, Yong-Il
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.28-42
    • /
    • 1992
  • This investigation is carried out numerically for the two dimensional natural convection and surface radiation heat transfer in a square enclosure. The bottom wall is a constant heat flux at hot temperature and also top wall is isothermal at cold temperature whereas the left and right side walls are adiabatic except a transparent window on the right side partially. The exchange of radiant energy is obtained by the net radiation method and the shape factor by the crossed string method. The change in temperature and Nusselt number distributions of the walls due to the effect of the wall emissivity for various emissivities and for various dimensionless insolation energies are investigated. The dimensionless local convective heat flux and local radiative heat flux distributions in the wall except an adiabatic wall are also compared.

  • PDF

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

SNG Production from CO2-Rich Syngas in a Pilot Scale SNG Process (파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Kim, Jin-Ho;Kim, Hyo-Sik;Yoo, Young-Don;Kim, Jun-Woo;Koh, Dong-Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.420-424
    • /
    • 2019
  • In SNG (synthetic natural gas) process by proposed RIST(Research Institute of Industrial Science & Technology)-IAE(Institute for Advanced Engineering) (including three adiabatic reactors and one isothermal reactor), the methanation reaction and water gas shift (WGS) reaction take place simultaneously, and the supply of steam with syngas might control the temperature in catalyst bed and deactivate the catalyst. In this study for development of SNG process, the characteristics of the methanation reaction with a Ni-based catalyst by prepared RIST and using a low $H_2/CO$ mole ratio (including $CO_2$ 22%) are evaluated. The operating conditions ($H_2O/CO$ ratio of the $1^{st}$ adiabatic reactor, operating temperature range of $4^{th}$ isothermal reactor, etc.) were reflected the results from previous studies and in the same condition a pilot scale SNG process is carried out. As a results, the pilot scale SNG process is stable and the CO conversion and $CH_4$ selectivity are 100% and 96.9%, respectively, while the maximum $CH_4$ productivity is $660ml/g_{cat}{\cdot}h$.

Convective Heat Transfer in a Channel with Isothermal Rectangular Beams (등온사각빔이 부착된 채널에서의 대류열전달)

  • Ree, J.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.63-72
    • /
    • 1995
  • Convective heat transfer in a two-dimensional horizontal and vertical channel with isothermal rectangular beams attached to one adiabatic wall is investigated from the numerical solution of Navier-Stokes and energy equations. The solutions have been obtained for dimensionless beam spacings, S/L=1~4, aspect ratios of beam, H/B=0.25~4, Reynolds numbers, Re=50~1000 and Grashof numbers, $Gr=0{\sim}5{\times}10^4$. The total mean Nusselt number, Nu_T for horizontal and vertical channels shows same value at Gr=0. As Gr increases, Nu_T for horizontal channel increases, but Nu_T for vertical channel shows similar value at S/L=2, H/B=0.25, Re=100. The total mean Nusselt number for horizontal channel is higher than that for vertical channel. As H/B increases, $Nu_T$ for both channel decrease at $Gr=10^4$, Re=100.

  • PDF