• Title/Summary/Keyword: Adiabatic temperature rise

Search Result 89, Processing Time 0.023 seconds

Study on Precooling of Concrete Using Ice and Cooling Water (얼음과 냉각수를 이용한 콘크리트의 프리쿨링에 관한 연구)

  • 정철헌;박장호;이순환
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 2000
  • Crack control due to temperature is an important factor for the mass concrete structure. Pre-cooling is the effective system to reduce the highest temperature of mass concrete. In this study, for pre-cooling, cooling water, cooling water with ics flake are used. The results of a series of experimental studies indicate that the changes in properties of fresh concrete after cooling are of low degree, and compressive strength of concrete is changed very little by cooling. The adiabatic temperature rise is also measured with pre-cooling concrete specimens. It is shown that hydration heat characteristics of cement and concrete were largely affected by pre-cooling.

Hydration Heat Analysis of Mass Concrete Replacement of Low Heat Binder and CGS with Fine Aggregate (저발열 결합재 및 CGS를 잔골재로 치환한 매스콘크리트의 수화열 해석)

  • Han, Jun-Hui;Lim, Gun-Su;Chi, Il-Kyeung;Yoon, Chee-Whan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.235-236
    • /
    • 2021
  • This study evaluated temperature distribution through adiabatic temperature rising test and hydration heat Analysis as a performance verification to utilize CGS as a hydration heat reduction material for mass concrete when replacing it with fine aggregate. According to the analysis, the temperature difference between the center and the surface was the highest at about 30℃, followed by the CGS 50% at 26℃ and the low heat combiner FA 30% at 23℃.

  • PDF

Fundamental Properties and Adiabatic Temperature Rise of Concrete with the Combination of Mineral and Chemical Admixture (혼화재료의 조합사용에 따른 콘크리트의 기초물성 및 단열온도상승 특성)

  • Jeon Chung Keun;Kim Jong;Shin Dong-An;Yoon Gi-Won;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.345-348
    • /
    • 2005
  • This paper presents the result of adiabetic temperature rise and fundamental properties of concrete combining admixtures. According to results, difference of setting time with I5.5hours is observed between S-P and R-F30 mixture. Based on the adiabetic temperature rise test, 8$^{circ}C$of heat producted occurs between E-P and R-F30 mixture. is applied to estimate the temperature rising under adiabetic curing condition, which exhibits closer consistency with tested value. The function mentioned above can account for the effect of dormant period in hydration process at early stage on hydration heat production. It reveals that the consideration of placing layer based on the mixture adjustment(E-P mixture at top layer and R-F30 mixture at bottom layer) in mass concreting will contribute to reduce hydration heat as well as alleviate tensile stress discrepancy between placing layer.

  • PDF

Hydration heat and autogenous shrinkage properties of silica-fume included mass concrete (실리카퓸을 사용한 매스콘크리트의 수화열과 자기수축 특성)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.489-492
    • /
    • 2008
  • Adiabatic temperature rise and autogenous shrinkage experiments were performed for three silica-fume included mass concrete mixtures and a reference mixture without silica-fume, in order to investigate the influence of silica-fume on the hydration heat and autogenous shrinkage properties of mass concrete, and to examine applicability of silica-fume to mass concrete. It was revealed from the experiment that, for mass concrete, the rate of hydration was hardly increased while the maximum adiabatic temperature rise decreased about 5$^{\circ}$C by the addition of silica-fume, and the amount of autogenous shrinkage was almost the same regardless of silica-fume replacement. These facts imply that silica-fume can enhance the resistance of mass concrete to temperature cracking as well as the durability.

  • PDF

Generation of Hydration Heat of the Concrete Combined Coarse Particle Cement and Blast Furnace Slag (조분 시멘트와 고로슬래그를 조합 사용한 콘크리트의 수화발열 특성)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Jang, Duk-Bae;Kim, Young-Pil;Cha, Wan-Ho;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • This study, having combined and displaced blast furnace slag("BS" hereinafter) known as admixture material that delays hydration reaction with coarse particle cement("CC" hereinafter) collected in particle classification method during ordinary portland cement("OPC" hereinafter), reviewed the hydration heat characteristics affecting the concrete. To reduce hydration heat, the study plain-mixed which used 100% OPC for W/B 50% level 1, displaced CC at level 3 of 25%, 50% and 75% for OPC, and by displacing BS with admixture material at level 5 of 0%, 20%, 40%, 60% and 80% for cement(OPC+CC), experimented totally 16 batches. As a result of experiment, in the case of flow, the more CC displacement rate increased, the more it tended to decrease, and the more BS displacement rate increased, the more it decreased. Also, as for simple adiabatic temperature rise by the CC and BS displacement rates, it decreased as displacement rate increased, and particularly in the case of displaced BS of 80%, It showed temperature reduction effect of about 63% companing with plain. Compressive strength decreased in proportion to displacement rate, however strength reduction increment was shown to decrease with age progress.

  • PDF

Hydration Heat Properties of High Flowing Self-Compacting Concrete with Normal Strength (보통강도 고유동 자기충전 콘크리트의 수화발열 특성)

  • Choi, Yun-Wang;Kim, Byoung-Kwon;Lee, Jae-Nam;Ryu, Deug-Hyun;Song, Yong-Kyu;Jung, Woo-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.497-500
    • /
    • 2008
  • This research carries out experiments for hydration exothermic rate and adiabatic temperature rise of concrete to examine the characteristics of the hydration heat of high flowing self-compacting concrete with a normal strength. As a result of the hydration exothermic rate experiment, the high flowing self-compacting concrete that used Lime stone powder and fly ash as polymers shows that its hydration heat amount reduces due to the reduction of unit cement. The result measured the adiabatic temperature rise of concrete presents that high flowing self-compacting concrete having lots of binder contents has a good performance in temperature reduction due to the effect of polymer and that triple adding high flowing self-compacting concrete has a similar temperature rise speed with conventional concrete. As a result of the research, high flowing self-compacting concrete shows a better temperature reduction performance for the binder content per unit than conventional concrete. In addition, it is judged that triple adding high flowing self-compacting concrete with a specified concrete strength 30 MPa is more beneficial in temperature reduction and early hydration heat than double adding high flowing self-compacting concrete.

  • PDF

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

A Study on the Structural Behavior in Mass Concrete Box Rahmen due to Hydration Heat (수화열에 의한 매스콘크리트 박스 라멘 구조물의 구조거동 연구)

  • 조병완;김영진;허민희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.349-352
    • /
    • 1999
  • Concrete cracks due to hydration heat are a serious problem, particularly in mass concrete structures such as box rahmen, dam or footing of pier, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. In this, study, ABAQUS program package was used to calculate the temperature distributions generated by hydration heat and the thermal stress in box rahmen structure which have thickness of 1.7~2.2m, and applied for various equations of adiabatic temperature rise such as korean code, japanese code, convection coefficient and low heat cement code.

  • PDF

Effect of Various Partial Replacements of Cement with Blast Furnace Slag and Different Placing Times on Thermal Properties of Mass Concrete and Modeling Work (타설시간차에 의한 고로슬래그 미분말의 치환율별 매스콘크리트의 온도특성)

  • Kim, Jong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.207-215
    • /
    • 2019
  • The aim of the research is analyzing the simple adiabatic temperature rising properties and the heat of hydration based on different placing timing of the mass concrete depending on various replacing ratios of blast furnace slag to comparative analyze the thermal cracking index and cracking possibility. As a result from the experiment, a suggested adiabatic temperature rising equation based on various blast furnace slag replacing ratios can be provide favorable correlation with over 0.99 of $R^2$ value by applying the initial induction period. With this relationship, more accurate prediction of the amount of the hydration heat rising and heating timing, and it is known that there is an approximately $13.1^{\circ}C$ of gap between plain concrete without blast furnace slag and concrete with 80 % of replacing blast furnace slag. To control the setting time and heat rising gap, the mix designs between top and bottom concrete casts were changed 15 cases, and D, E, H, I, and L models of controlling the heat of hydration showed 41.23 to $46.88^{\circ}C$ of core temperature and 0.98 to 1.27 of thermal cracking index. Therefore the cracking possibility was 15 to 52 % of favorable results of possibly controlling both the cracking due to the internal and external retainment and concrete temperature at early age.