• Title/Summary/Keyword: Adiabatic temperature

Search Result 408, Processing Time 0.03 seconds

Adiabatic property of plywood wall panel (합판 벽체의 단열성능)

  • 박준철;홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.62-68
    • /
    • 2002
  • Adiabatic property of plywood wall panel was examined to evaluate their thermal conductivities. The amount of heat loss was investigated through overall heat transmission experiment. Styroform and grass wool showed less heat loss. However, yellowsoil board and laminated lumber showed high volume specific heat capacity. When the changes of indoor and outdoor temperature were checked in model house, wall manufactured with styroform and grass wool was affected easily by the changes of outdoor temperature. Yellowsoil, the mixed board of yellowsoil and sawdust, and laminated lumber, which have high volume specific heat capacity, were not affected much. The rates of overall heat transmission were much better in styroform and grasswool, but the adiabatic properties were much higher in yellowsoil board and the mixed board of yellowsoil and sawdust. The results showed that the insulating material can be developed using yellowsoil and wood, which are nature friendly materials.

  • PDF

Prediction of Serrated Chip Formation due to Micro Shear Band in Metal (미소 전단 띠 형성에 의한 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

Thermodynamic Analysis of the Diabatic Efficiency of Turbines and Compressors (터빈과 압축기의 비단열 효율에 대한 열역학적 해석)

  • Park, Kyoung Kuhn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.139-148
    • /
    • 2016
  • Thermodynamic analysis is conducted on the first-order approximation model for turbines and compressors. It is shown that the adiabatic efficiency could be greater than unity, depending on the entropic mean temperature, entropy generation, thermal reservoir temperature, and heat transfer. Therefore, adiabatic efficiency applied to a diabatic control volume results in an error overestimating its performance. To resolve this overestimation, it is suggested that a reversible diabatic process be referred to as an ideal process to evaluate diabatic efficiency. The diabatic efficiency suggested in this work is proven to always be less than unity and it is smaller than the exergy efficiency in most cases. The diabatic efficiency could be used as a more general definition of efficiency, which would include adiabatic efficiency.

Adiabatic Analysis of 1180MPa Advanced High Strength Steel by Impact Weight (충격하중에 의한 1180MPa급 초고강도강의 단열해석)

  • Kim, Kun-Woo;Lee, Jae-Wook;Yang, Min-Seok;Lee, Seong-Yeop;Kim, Da-Hye;Lee, Jae-Jin;Mun, Ji-Hoon;Park, Ji-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.93-98
    • /
    • 2022
  • Adiabatic blanking is a method to improve productivity through an autocatalytic cycle that occurs repeatedly through plastic deformation and thermal softening caused by impact energy. In this study, an axisymmetric analysis model comprising a punch, die, holder, and specimen was developed to confirm the temperature and deformation characteristics caused by an impact load. Through this, the impact energy, diameter of the punch, gap between the punch and die, and the effect of the fillet were analyzed. Because this process occurs in a very short time, adiabatic analysis can be performed using the explicit time-integration method. The analysis, confirmed that it is necessary to design a structure capable of increasing the local temperature and plastic deformation by controlling the impact energy, working area, gap, and the fillet.

Calculation of thermodynamical equilibrium composition of combustion gases (燃燒氣體의 熱力學的 平衡組成計算에 관한 硏究)

  • 허병기;이청종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.177-188
    • /
    • 1987
  • A compute program based on the minimization of total Gibbs' free energy and enthalpy balance was developed to calculate the chemical equilibrium composition and adiabatic flame temperature, especially stressed on NO and CO concentration of Heavy oil. Twenty four components of combustion gases which would be produced from the combustion of Heavy oil were chosen and utilized for the products composition analysis of competing combustion reaction. As the results, following conclusions were turned out; (1) Maximum adiabatic flame temperature was found around to be 2900K, when the stoichiometric air ratio was 0.8. (2) Maximum NO quantity in adiabatic process was occurred when supplied air quantity was around 120% of theoretical air requirement. (3) NO and CO quantities were increased with combustion gas temperature at constant stoichiometric air ratio. (4) At constant temperature of combustion gas, NO quantity was increased and Co quantity was decreased with supplied air quantity.

A Study on the Emission Characteristics of Syngas(H2/CO)-Air Premixed Flame according to the H2 contents (수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 배출특성 연구)

  • Jeong, Byeong;Choi, Jongmin;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.9-10
    • /
    • 2013
  • This study reports the results of an experimental investigation of emission and temperatures from the syngas-air premixed flame with a various mixture composition in the region of large equivalence ratios. The effects of hydrogen contents and equivalence ratios on the flame velocity, which reported before, and emission of syngas fuel are examined. In this study, representative syngas mixture compositions ($H_2:CO$) such as $H_2:CO=10:90$, 25:75, 50:50 and 75:25 and equivalence ratios from 0.5 to 5.0 have been conducted. The emissions of syngas fuel were measured by the high precision analyzer with enclosure configuration and the adiabatic temperatures are calculated by used Chemkin basis. The NOx emission level is coincided relatively well with the adiabatic temperature distributions in lean mixture conditions, but for rich mixture conditions NOx level was also increased again even though the adiabatic temperature decreases. Such an increasing characteristics in rich mixture conditions is coincided well with the tendency that rather the flue gas temperature increases.

  • PDF

Mathematical Modeling of Self-propagating High Temperature Synthesis of Molybdenum- Tungstenb Disilicide (이규화 몰리브덴-텅스텐의 자전 고온 합성 반응 모델링)

  • Yeon, Sun-Hwa;Jang, Dae-Gyu;Lee, Cheol-Gyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.164-170
    • /
    • 2001
  • The Self-propagating High-temperature Synthesis (SHS) for synthesizing ($Mo_{1-z}$ , $W_{z}$)$Si_2$was conducted experimentally with the mole fraction of Tungsten(W) from z=0.0 to z=0.5. The temperature profile was measured according to the reaction time through the thermocouple that was equipped into the center of these samples. When the reaction front is propagated around the thermocouple, the highest temperature appears and we regard this temperature as the adiabatic temperature. We found out by experimental results that the reaction velocity is in the range of 2.14~1.35mm/sec and the adiabatic temperature is in the range of 1883~1507K for the six samples. The reaction velocity and the adiabatic temperature were inclined to decrease with an increasing of the mole fraction of Tungsten (W). The SHS modeling is presented in order to predict the temperature profiles and these results are compared with the experimental results. It is predicted that in case of increasing the initial temperature of these six samples, the reaction temperature increased and that the sample of z=0.5 needs the preheating up to 800~900K in order to become reaction temperature 1900K.

  • PDF

Study on the Adiabatic Temperature Rise of High Strength Concrete with Design Compressive Strength and Mixing Temperature (타설온도 및 혼화재 치환에 따른 고강도콘크리트의 단열온도상승에 관한 연구)

  • Lee, Byoung-Chun;Kim, Gyu-Yong;Koo, Kyung-Mo;Nam, Jeong-Soo;Ham, Eun-Young;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.101-102
    • /
    • 2012
  • In this study, it was evaluated about hydration heat reduction under hot weather condition. Placement temperature set 25℃ and 35℃, For hydration heat reduction was applied such as FA and BFS. As a results, mixture of BFS70% is the most effective hydration temperature reduction.

  • PDF

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

On Study of Summertime Ice Formation in the Ice Valley at Unchiri, Gangwon-Province (강원도 정선군 운치리 얼음골의 여름철 결빙현상에 관한 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.857-863
    • /
    • 2002
  • The meteorological elements were measured to investigate cause of summertime ice formation at Unchiri, Gangwon Province. The cause of freezing at valley was conformed as adiabatic expansion theory, latent heat of evaporation, natural convective theory, cold air remain theory, and convective freezing theory according to former study. However nither theory produced a satisfactory explanation. This studying area is not valley but ridge, and underground water surface exists at below than freezing height. wintertime temperature drop and summertime cold air spouting were explain as natural convective theory, generation of water drop on the rock was explained as cooling theory by air expansion, and ice formation on the rock was explained as adiabatic expansion theory. In conclusion, formation of ice valley at Unchiri was formed by natural convective theory, adiabatic expansion theory, and latent heat of evaporation successively.