• Title/Summary/Keyword: Adiabatic model

Search Result 170, Processing Time 0.036 seconds

The Optimum Design Conditions of Stirling Engines Using The Ideal Adiabatic Model (이상적인 단열모델에 의한 스터링기관의 최적설계조건)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.656-663
    • /
    • 1990
  • To investigate the optimum design conditions of Stirling Engines at the preliminary design stage, comparative study between adoabatoc analysis based on an approximate analytical solution to the Ideal Adiabatic Model and the existing isothermal analysis has been carried out. The optimum phase angle obtained from adiabatic analysis to achieve the maximum work with given combination of design parameters is greater than that from isothermal analysis, while the optimum swept volume ratio is smaller. Effect of variation in the temperature ratio on the work parameter is proved to be stronger in adiabatic analysis. On the contrary, the work parameter by adiabatic analysis is less sensitive to a change in the dead volume ratio. Especially in adiabatic analysis there exists the optimum dead volume ratio maximizing the work parameter, which may provide a lower limit of it. Considering that the adiabatic model is more reasonable, signifiant differences between two methods lead to the conclusion that adiabatic analysis is preferable to isothermal one for the preliminary design of Stirling Engines.

Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide ($CO_2$ 단열 모세관내 유동 특성)

  • Roh, Geon-Sang;Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

A study on the Formation of Adiabatic Shear Band of Tungsten Heavy Alloys (텅스텐 중합금의 단열전단밴드 형성 연구)

  • 이승우;문갑태;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.187-190
    • /
    • 2002
  • To study adiabatic shear band formation of tungsten heavy alloys, 5 prismatic specimens are loaded by high velocity impacts and treated as plane strain problems. Their volume percent of tungsten particles in WHA are 81%, 93% and 97% respectively and for the fixed 81% volume percent, small size particle model, large size particle model, undulated particle models are considered and then, the effects of particle's volume ratio, geometry and size to the formation of shear band are discussed.

  • PDF

Prediction of Serrated Chip Formation in High Speed Metal Cutting (고속 절삭공정 중 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.

Numerical analysis in oscillating flow considering orientation of porous media regenerator (다공성 재생기의 방향성을 고려한 왕복유동 수치해석)

  • Yang, Mun-Heum;Park, Sang-Jin;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.

INFLUENCE OF CONSTANT HEAT SOURCE/SINK ON NON-DARCIAN-BENARD DOUBLE DIFFUSIVE MARANGONI CONVECTION IN A COMPOSITE LAYER SYSTEM

  • MANJUNATHA, N.;SUMITHRA, R.;VANISHREE, R.K.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.99-115
    • /
    • 2022
  • The problem of Benard double diffusive Marangoni convection is investigated in a horizontally infinite composite layer system consisting of a two component fluid layer above a porous layer saturated with the same fluid, using Darcy-Brinkman model with constant heat sources/sink in both the layers. The lower boundary of the porous region is rigid and upper boundary of the fluid region is free with Marangoni effects. The system of ordinary differential equations obtained after normal mode analysis is solved in closed form for the eigenvalue, thermal Marangoni number for two types of thermal boundary combinations, Type (I) Adiabatic-Adiabatic and Type (II) Adiabatic -Isothermal. The corresponding two thermal Marangoni numbers are obtained and the essence of the different parameters on non-Darcy-Benard double diffusive Marangoni convection are investigated in detail.

Flow Characteristics of R600a in an Adiabatic Capillary Tube (단열 모세관내 R600a의 유동 특성)

  • Ku, Hak-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 2010
  • In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

Prediction of Serrated Chip Formation due to Micro Shear Band in Metal (미소 전단 띠 형성에 의한 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

Dynamic Analysis of Free-Piston Stirling Engine Using Ideal Adiabatic Model (이상단열 모델에 의한 자유피스톤 스털링엔진의 동적거동 해석)

  • 변형현;최헌오;신재균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1751-1758
    • /
    • 1994
  • A new set of governing equations is derived for the dynamic analysis of the Free-Piston Stirling Engines(EPSE). Equations from the ideal adiabatic model for the thermodynamic analysis of the working fluid are incoporated with the equations of motion for the moving masses of the system, resulting in a set of nonlinear differential equations. The coupled set of equations are numerically integrated with proper intial conditions to obtain a steady state response of the engine. The proposed method is compared with the conventional method of analyzing EPSE based mainly on the ideal isothermal model. The results clearly shows the limitationsl of the conventional methods and the relative advantages of the method proposed in the present study.

Simulation of the Refrigeration Cycle Equipped with a Non-Adiabatic Capillary Tube (비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션)

  • Park, Sang-Goo;Son, Ki-Dong;Jeong, Ji-Hwan;Kim, Lyun-Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.131-139
    • /
    • 2009
  • The simulation of refrigeration cycle is important since the experimental approach is costly and time-consuming. The present paper focuses on the simulation of a refrigeration cycle equipped with a capillary tube-suction line heat exchanger(SLHX), which is widely used in small vapor compression refrigeration systems. The present simulation is based on fundamental conservation equations of mass, momentum, and energy. These equations are solved through an iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase flow model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tube. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP).