• 제목/요약/키워드: Adiabatic Flame Temperature

검색결과 45건 처리시간 0.018초

HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도 (Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature)

  • 양영명;김호연
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.21-29
    • /
    • 1998
  • Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

  • PDF

CARS 측정 기술을 이용한 스파크 점화 기관에서의 화염 전 화학 반응에 의한 온도 변화에 관한 연구 (A Study of the Temperature Elevation Due to the Pre-flame Reaction in a Spark-Ignition Engine Using CARS Technique)

  • 최인용;전광민;박철웅;한재원
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.9-16
    • /
    • 2001
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark- ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached look. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

CARS 를 이용한 스파크 점화 기관에서의 화염 전화학 반응에 의한 온도 변화에 관한 연구 (A Study of the Temperature Elevation Due to the Pre-flame Reaction Using CARS)

  • 최인용;전광민;박철웅;한재원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.85-92
    • /
    • 2000
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark-ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressure. Significant heating by pre-flame reaction in the end gas was observed in the late part of compression stroke under both knocking and non-knocking condition. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached 700 K. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

고체산화물 연료전지용 예혼합 연소시스템 개발 (Development of Combustion System for Solid Oxide Fuel Cell System)

  • 조순혜;이필형;차천륜;홍성원;황상순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향 (Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames)

  • 이원남
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 배출특성 연구 (A Study on the Emission Characteristics of Syngas(H2/CO)-Air Premixed Flame according to the H2 contents)

  • 정병규;최종민;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.9-10
    • /
    • 2013
  • This study reports the results of an experimental investigation of emission and temperatures from the syngas-air premixed flame with a various mixture composition in the region of large equivalence ratios. The effects of hydrogen contents and equivalence ratios on the flame velocity, which reported before, and emission of syngas fuel are examined. In this study, representative syngas mixture compositions ($H_2:CO$) such as $H_2:CO=10:90$, 25:75, 50:50 and 75:25 and equivalence ratios from 0.5 to 5.0 have been conducted. The emissions of syngas fuel were measured by the high precision analyzer with enclosure configuration and the adiabatic temperatures are calculated by used Chemkin basis. The NOx emission level is coincided relatively well with the adiabatic temperature distributions in lean mixture conditions, but for rich mixture conditions NOx level was also increased again even though the adiabatic temperature decreases. Such an increasing characteristics in rich mixture conditions is coincided well with the tendency that rather the flue gas temperature increases.

  • PDF

초소형 연소기내 화염전파의 수치모사 (Numerical Simulation of Flame Propagation in a Micro Combustor)

  • 최권형;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.

산소부화연소에서 $CO_2$ 첨가에 대한 영향 (Effects of $CO_2$ addition to Oxygen-Enriched Combustion)

  • 김호근;김한석;안국영;김용모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1389-1394
    • /
    • 2003
  • $CO_2$ is a well-known green house gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. But the adiabatic flame temperature is too high. So existing facilities must be changed, or the adiabatic flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were studied experimentally for the various oxygen-enriched mtios(OER) by addition of $CO_2$ under coustant $O_2$ flowrate. Results showed that the reaction zone was quenched, broadened, as addition of $CO_2$ was increased. Temperature has a large effect on the NOx emission. The emission of NOx in flue gas decreased due to the decreased temperature of reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0, but the composition of CO decreased by quenching effect at OER=50 and 100%.

  • PDF

열적부분산화법을 적용한 Perforated SiC 관의 개질특성연구 (Study on Characteristics of Reforming by TPOX in Perforated SiC Tube)

  • 이필형;차천륜;홍성원;임현진;황상순
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.25-27
    • /
    • 2012
  • In this paper, combustion process in the perforated silicon carbide(SiC) tube using a two dimensional approaches with GRI Mechanism 1.2 was investigated. The computational mesh structure which is divided into $60{\times}15$ and boundary conditions are set to constant mass flow rate at the inlet and constant pressure condition at the outlet respectively. Its result shows that the temperature on this peak was roughly 100K higher than the adiabatic flame temperature of 2223K for a free laminar flame at these conditions.

  • PDF

燃燒氣體의 熱力學的 平衡組成計算에 관한 硏究 (Calculation of thermodynamical equilibrium composition of combustion gases)

  • 허병기;이청종
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.177-188
    • /
    • 1987
  • 본 논문에서는 연소기체의 열력학적 평형조성 계산을 위한 수식을 Gibbs의 자 유에너지 최소화법에 의하여 유도하고 이를 컴퓨터 프로그램화하여, Table 1의 특성을 지닌 연료에 대하여 ⅰ) 연소공기량에 따른 평형조성 및 단열불꽃온도, ⅱ) 연소온도 변화에 따른 평형조성의 변화를 계산함으로써 연소기체의 생성기구를 열력학적으로 해 석하였다.