• Title/Summary/Keyword: Adhesive Shear Stress

Search Result 96, Processing Time 0.02 seconds

Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions

  • Touati, Mahmoud;Tounsi, Abdelouahed;Benguediab, Mohamed
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.337-355
    • /
    • 2015
  • In this scientific work, an improved analytical solution for adhesive stresses in a concrete beam bonded with the FRP plate is developed by including the effect of the adherend shear deformations. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The shear stress distribution is supposed to be parabolic across the depth of the adherends in computing the adhesive shear stress and Timoshenko's beam theory is employed in predicting adhesive normal stress to consider the shear deformation. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of adhesive stress distributions.

Stress Distribution and Strength Evaluation of Adhesive Bonded Single-lap Joints (단일겹침 접착제 접합부의 응력분포와 강도평가)

  • 이중삼;임재규;김연직
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.342-347
    • /
    • 2001
  • Recently, adhesive-bonding technique is wifely used in manufacturing structures. Stress and strain analysis of joints are essential to design adhesive-bonded joints structure. The single-lap adhesive joint is the design dominating the range of adhesive joints. In this study, single-lap specimens with different joint dimensions were used for the tensile-shear test and finite element calculation in of order to investigate the effect of overlap length and adhesive-bonding thickness on adhesive strength and stress distribution of the joints. Consequently, it was found that overlap lap size and thickness can be important parameters of structure joints using adhesive bonding, which is effected on adhesive strength.

  • PDF

Shear Strength of an Aluminum Alloy Bonded with a DP-460 Adhesive: Single Lap-shear Joints

  • Kim, Hyun-Bum;Nishida, Tomohisa;Oguma, Hiroyuki;Naito, Kimiyoshi
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Single lap-shear joints (SLJ) specimens with and without partial round fillets were fabricated to measure the average shear strength of adhesives. The effects of the length of the adherend on the SLJ specimens were also investigated. An epoxy adhesive was used to bond aluminum alloy. Tensile tests were performed on the adhesive bulk specimens to measure the mechanical properties. The finite element analysis (FEA) method was used to measure the adhesive stress distributions, i.e., the peel and shear stresses, on the bonded part. The experimental results revealed that the specimen consisting short length of adherend and without the partial round fillets exhibited the smallest average shear strength of adhesive among the investigated specimens. FEA revealed that the low average shear strength for the specimen with a short adherend length was caused by high stress concentrations on the adhesive at the edge of the bonded part.

Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive

  • Tayeb, Bensatallah;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.133-153
    • /
    • 2020
  • In this paper, an improved theoretical interfacial stress and slip analysis is presented for simply supported composite steel-concrete beam bonded with an adhesive. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of elements has been noted in the results. It is observed that large shear is concentrated and slip at the edges of the composite steel-concrete. Comparing with some experimental results from references, analytical advantage of this improvement is possible to determine the normal and shear stress to estimate exact prediction of normal and shear stress interfacial along span between concrete and steel beam. The exact prediction of these stresses will be very important to make an accurate analysis of the mode of fracture. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite steel-concrete beam. This research is helpful for the understanding on mechanical behavior of the connection and design of such structures.

The behavior of adhesive joints affected by the geometry and stacking sequence of composite materials

  • Ait Kaci Djafar;Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Sahli Abderahmane
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.609-623
    • /
    • 2023
  • The objective of this study is to investigate the distribution of von Mises stress, peeling stress, and shear stress in the adhesive layer used to bond two composite panels, considering various parameters using a three-dimensional finite element method. The stiffness of the materials and the effect of the stacking order on the amount of load transferred to the adhesive layer were examined to determine which type of laminate generates less stress at the bond line. The study analyzed six different stacking sequences, all with a common first layer in contact with the adhesive and a 0° orientation. Additionally, the impact of using hybrid composites on reducing bond line stress was investigated.

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect - (보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구-)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.

New optimization method of patch shape to improve the effectiveness of cracked plates repair

  • Bouchiba, Mohamed S.;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.301-326
    • /
    • 2016
  • An optimization method of patch shape was developed in this study, in order to improve repair of cracked plates. It aimed to minimize three objectives: stress intensity factor, patch volume and shear stresses in the adhesive film. The choice of these objectives ensures improving crack repair, gaining mass and enhancing the adhesion durability between the fractured plate and the composite patch. This was a multi-objective optimization combined with Finite elements calculations to find out the best distribution of patch height with respect to its width. The implementation of the method identified families of optimal shapes with specific geometric features around the crack tip and at the horizontal end of the patch. Considerable mass gain was achieved while improving the repair efficiency and keeping the adhesive shear stress at low levels.

A Study on the Shear Characteristics of Adhesives in Primary Mirror Supports of Satellite Camera (인공위성 카메라 주반사경 지지부에 적용되는 접착제의 전단 특성 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.808-815
    • /
    • 2007
  • The optical performance of the mirror fur satellite camera is highly dependent on the adhesive properties between the mirror and its support. Therefore, in order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Also the experiment should be performed in circumstances similar to real manufacturing process of mirror, because extra factors such as size effects, the adhesion effects of primer and reactions between adhesive and primer affect the properties of adhesive regions. In this research shear moduli of the adhesives are determined by using a single lap adhesively bonded joint. For the shear tests, several temperatures have been selected from $-20^{\circ}C$ to $55^{\circ}C$ which is operating temperature range of the adhesive. In the case of linear behavior materials, shear moduli are calculated through a linear curve fitting. Shear stress-strain relation is obtained by using an exponential curve fitting for material which shows non-linear behavior. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics and adaptability of the adhesives are discussed regarding their temperature sensitivity.

Stress Analysis Crack of Double-lap Joint with an End Mismatch (End mismatch를 갖는 접착이음의 강도 평가)

  • Hyun, Cheol-Seung;Heo, Sung-Pil;Yang, Won-Ho;Ryu, Myung-Hae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.465-470
    • /
    • 2001
  • The adhesively-bonded joints considered in this investigation include single-lap joint and double-lap joint. For an adhesively bonded double-lap joint, end mismatch between the two cuter adherends(upper, lower) can not removed completely although it can be controlled within a manufacturing tolerance. This paper shows that the end mismatch introduces local bending and end mismatch affects the shear and peel stresses in the adhesive. The double-lap joint with an end mismatch is affected of adhesive thickness, material properties of adhesive and adherend etc. Also, we concluded that there are critical value of an end mismatch to provoke the interface fracture.

  • PDF