• Title/Summary/Keyword: Adhesive Joints

Search Result 207, Processing Time 0.026 seconds

Bonding Strength Analysis of Structural Joints by using Ultrasonic Method (초음파법을 이용한 구조이음의 접합강도해석)

  • Jang Chul Sub;Oh Seung Kyu;Yi Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2005
  • This article has been investigated the use of FFT for adhesive joints analysis between metal sheets. The method is based on the measurement of the reflection wave at the metal/adhesive interface. After describing briefly the physical aspects of the phenomenon, an index is defined to detect defective zone of the joint(both for the lack of adhesive and for insufficient adhesion): the influence of the experimental variables(variable stress...) on the measurement is discussed. By means of a control experiment it is shown that stress variation in adhesive joints are separate to be distinguished. In this paper, Nondestructive evaluation in adhesive joints are evaluated together with ultrasonic testing and finite element analysis.

Bonding Strength Analysis and Ultrasonic Testing of Structural Adhesive Joints (구조접착 이음에서의 접합강도해석과 초음파실험)

  • 장철섭;오승규;김종현;황영택;이원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.860-864
    • /
    • 2004
  • This article discusses the use of pulse-echo ultrasonic testing for the stress analysis of adhesive bonds between metal sheets. The method is based on the measurement of the reflection wave at the metal/adhesive interface. After describing briefly the physical aspects of the phenomenon, an index is defined to detect defective zone of the joint(both for the lack of adhesive and for insufficient adhesion); the influence of the experimental variables(variables stress...) on the measurement is discussed. By means of a control experiment it is shown that Stress Variation in Adhesive Joints are separate to be distingguished. In this paper, Quantitative Nondestructive Evaluation in Adhesive Joints are together with Ultrasonic Testing and Finite Element Method.

  • PDF

Characteristics of Adhesive bonded Joints of Steels for Automobile(I) (자동차용 강판의 접착특성 - 접착부위 접합 강도와 영향인자 -)

  • 윤병현;권영각
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.106-114
    • /
    • 1995
  • The characteristics of adhesive bonded joint of steels for automobile were investigated. Shear and tear strength were tested and analyzed for the joints of cold rolled steel sheets bonded with three kinds of epoxy and urethane based adhesive. The results showed that the tensile shear strength and the tear strength of adhesive joint were affected by the shape of adhesive joint such as the length and width of adhesive joint. The thickness of adhesive layer was very important factor affecting the bonding strength. The shear strength increased with decrease of the thickness of adhesive layer, while the tear strength decreased as the thickness of adhesive layer decreased. In comparison with the strength of spot welded joint, the shear strength of adhesive Joint was higher than that of spot welded joint, but the tear strength of adhesive Joint was lower than that of spot welded joint.

  • PDF

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴 강도특성에 미치는 섬유방향의 영향)

  • Im, Jae-Gyu;Yun, Ho-Cheol;Lee, Sang-Yong;Renliang, Wang
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.94-96
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tensile and peel tests were carried out on specimen manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the failure strength of adhesive bonded joints using hybrid stacked composites with a polyester and bamboo natural fiber layer adjacent to the fiber orientation. From results, the load directional orientation, small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. and these characters are have a great influence on fracture strength and failure shape of adhesive bonded joints using hybrid stacked composites in the difference of fiber orientation.

  • PDF

Reliability Monitoring of Adhesive Joints by Piezoelectricity (압전특성을 이용한 접착 조인트의 안전성 모니터링)

  • Kwon, Jae-Wook;Chin, Woo-Seok;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1388-1397
    • /
    • 2003
  • Since the reliability of adhesively bonded joints for composite structures is dependent on many parameters such as the shape and dimensions of joints, type of applied load, and environment, so an accurate estimation of the fatigue life of adhesively bonded joints is seldom possible, which necessitates an in-situ reliability monitoring of the joints during the operation of structures. In this study, a self-sensor method for adhesively bonded joints was devised, in which the adhesive used works as a piezoelectric material to send changing signals depending on the integrity of the joint. From the investigation, it was found that the electric charge increased gradually as cracks initiated and propagated in the adhesive layer, and had its maximum value when the adhesively bonded joint failed. So it is feasible to monitor the integrity of the joint during its lifetime. Finally, a relationship between the piezoelectric property of the adhesive and crack propagation was obtained from the experimental results.

A Study on Clinching Characteristics for A6451 Aluminum and Galvanized Steels and the Application of Clinching Technology to Automotive Parts (A6451 알루미늄 및 용융아연도금강판의 클린칭 접합특성 및 접합기술의 차체 부품 적용 연구)

  • Kwon, Eui-Pyo;Park, Hyun-kyung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.886-893
    • /
    • 2018
  • In this study, clinching characteristics of aluminum and galvanized steels were investigated for the application of clinching as a joining technique to aluminum wheelhouse assembly. A6451 aluminium alloy and galvanized steel sheets were joined by hybrid joining(clinching + adhesive bonding). Tensile-shear load and fracture mode of hybrid joints were investigated. Maximum tensile-shear load of hybrid joints was about six times higher than that of clinched joints without adhesive. Energy absorption values of hybrid joints were higher than those of clinched joints without adhesive as well as resistance spot welded steel joints. Developed aluminum wheelhouse assembly showed higher static stiffness than the existing steel parts. Aluminum wheelhouse inner panel unit was 44% lighter than the steel unit, and the final assembled aluminum wheelhouse was 14.6% lighter than the existing steel parts.

A Study on the Strength Evaluation and Defect Detection Capability of Adhesive Joint with CNTs (CNT를 첨가한 접착조인트의 결함탐지능 및 강도 평가에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.151-155
    • /
    • 2018
  • Mechanical joint and adhesive joint are two typical joining methods for structures. The adhesive joints distribute the load over a larger area than mechanical joints and have excellent fatigue properties. However, the strength of adhesive joint greatly depends on the environmental conditions and the skill of the operator. Therefore, there is a need for techniques to evaluate the quality of the adhesive joints. The electric resistance method is a very promising technique for detecting defects by measuring the electrical resistance of an adhesive joint in which CNTs are dispersed in an adhesive. In this study, Aluminium-Aluminium adhesive single lap joint specimens were fabricated by using the adhesive dispersing CNTs using a sonicator and a 3-roll mill, and the static strengths and defect detection capabilities of the joints using the electrical resistance method were evaluated according to the CNTs content.

Effect of Temperature and Immersion Time on the Environmental Adhesive Strength of Adhesively Bonded Joints of Rolled Steel Sheet (압연강판 접착제 접합부의 환경 접합강도에 미치는 온도 및 침수시간의 영향)

  • Song, Jun-Hee;Lee, Hee-Jae;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2662-2669
    • /
    • 2002
  • Recently structural applications of adhesive bonding method have been increased extensively in automobile industry. Adhesively-bonded joints which are used in automobile field are exposed to various environmental conditions. In this study, several environmental factors were concerned to evaluate their effects on the adhesive strength such as air temperature, water temperature, exposed time in water. The specimens are exposed for 1, 10 and 100 hours at various air temperatures to evaluate the effects of the air and water temperature on the adhesive strength. It is proved that the adhesive strength decrease with rising the air and water temperature, and the adhesive strength decrease steeply at the higher temperature with increasing the exposure time in water.

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

자동차용 구조접착접합이음의 응력해석과 강도평가에 관한 연구

  • Yu, Yeong-Chul;Oh, Seung-Kyu;Yi, Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.905-915
    • /
    • 1998
  • Static tensile tests using adhesive-bonded single-lap joints of aluminum alloy were conducted to investigate the effect of geometric factor, overlap length, adherend thickness, adhesive thickness and material composition of adherend/adhesive on the strength of adhesive joint. The average applied shear stress at joint fracture decreased with increasing lap length. However increasing the adherend thickness resulted in a higher joint strength. Higher yield strength of adherend and lower elastic modulus of adhesive is advantageous to the adhesive joint. Newly proposed modified joint factor could be well evaluated the influence of lap length, adherend thickness and adhesive thickness on the bond strength for adhesive joints.