• Title/Summary/Keyword: Adhesive Film

Search Result 311, Processing Time 0.024 seconds

Effects of Freezing and Microwave Heating on the Textural Characteristics of Nonwaxy Rice Flour Gels and Rice Cake(Injolmi) (동결 및 마이크로파 가열이 멥쌀가루겔 및 인절미의 조직 특성에 미치는 영향)

  • 고하영
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.81-86
    • /
    • 1999
  • The textural characteristics of nonxaxy rice flour gels and rice cake(Injolmi) with different water contents and additives were evaluated after freezing and microwave heating. As moisture content of rice flour gels increased from 45% to 55%, its hardness and gumminess decreased, but adhesive and cohesiveness had no significant difference. Microwave heating did not markedly affect the texture but frozen storage was very effective to prevent the hardening of products. Hardness of reheated rice gels increased more rapidly in non-packaged sample than in PE wrap film and affected by storage time of 24hrs at 20$^{\circ}C$. As sugar content of rice flour gels increased from 0% to 10%, its hardness, adhesiveness, and gumminess decreased, while cohesiveness did not change.

  • PDF

Fabrication and Characteristic Evaluation of a Flexible Tactile Sensor Using PVDF (PVDF를 이용한 유연 촉각센서의 제작과 특성 평가)

  • Yu, Kee-Ho;Yun, Myung-Jong;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.161-166
    • /
    • 2001
  • The prototype of a tactile sensor with $4\times 4$ taxels using PVDF was fabricated. The electrode patterns of the thin Cu tape are attached to the 28${\mu}{\textrm}{m}$ thickness PVDF using conductive adhesive and covering the sensor using polyester film for insulation. The structure of the sensor is flexible and the fabrication procedure is easy relatively. Also the output characteristics of the sensor was nearly linear with 8% deviation. The signals of a contact pressure to the tactile sensor are sensed and processed through A/D converter, DSP system and personal computer. The reasonable performance for the detection of contact shape and force distribution was verified through the experiment.

  • PDF

Effect analysis of thermal-mechanical behavior on fatigue crack of flip-chip electronic package (플립 칩 전자 패키지의 피로 균열이 미치는 열적 기계적 거동 분석)

  • Park, Jin-Hyoung;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1673-1678
    • /
    • 2007
  • The use of flip-chip type electronic package offers numerous advantages such as reduced thickness, improved environmental compatibility, and downed cost. Despite numerous benefits, flip-chip type packages bare several reliability problems. The most critical issue among them is their electrical performance deterioration upon consecutive thermal cycles attributed to gradual delamination growth through chip and adhesive film interface induced by CTE mismatch driven shear and peel stresses. The electronic package in use is heated continuously by itself. When the crack at a weak site of the electronic package occurs, thermal deformationon the chip side is changed. Therefore, we can measure these micro deformations by using Moire interferometry and find out the crack length.

  • PDF

A study on the stamp-resist interaction mechanism and atomic distribution in thermal NIL process by molecular dynamics simulation (분자동역학 전산모사를 이용한 나노임프린트 리소그래피 공정에서의 스탬프-레지스트 간의 상호작용 및 원자분포에 관한 연구)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.343-348
    • /
    • 2007
  • Molecular dynamics study of thermal NIL (Nano Imprint Lithography) process is performed to examine stamp-resist interactions. A layered structure consists of Ni stamp, poly-(methylmethacrylate) thin film resist and Si substrate was constructed for isothermal ensemble simulations. Imposing confined periodicity to the layered unit-cell, sequential movement of stamp followed by NVT simulation was implemented in accordance with the real NIL process. Both vdW and electrostatic potentials were considered in all non-bond interactions and resultant interaction energy between stamp and PMMA resist was monitored during stamping and releasing procedures. As a result, the stamp-resist interaction energy shows repulsive and adhesive characteristics in indentation and release respectively and irregular atomic concentration near the patterned layer were observed. Also, the spring back and rearrangement of PMMA molecules were analyzed in releasing process.

  • PDF

A Study on the Characteristics of Conductive Paste for Roll-to-Roll Printing (Roll to Roll Printing용 전도성 Paste 물성 연구)

  • Cho, Mi-Jeong;Nam, Su-Yong
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2007.11a
    • /
    • pp.59-64
    • /
    • 2007
  • We have manufactured low-curable silver pastes for gravure printing out of roll to roll printing process. When printing, the pastes be used different silver powder shape because of the printing characteristics. The pastes were prepared with silver powder by silver powder shape, polyester resin, solvent and homogenized on a standard three-roller mill. And the pastes exhibited a shear-thinning flow at viscosity profile. Moreover the adhesive strength and resistivity of silver film had good characteristics. With the manufactured paste in this study, RFID antenna circuit had flexible is manufactured and it had $10^{-4}{\sim}10^{-5}{\Omega}{\cdot}cm$.

  • PDF

Cleaning efficiency for Alternative cleaning solvent of Screen printing (스크린 인쇄에서의 대체세정제에 대한 세정효율)

  • 김재해
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.2
    • /
    • pp.117-130
    • /
    • 1997
  • Studies have been conducted to explore thermal imidization of polyamic acid. Aromatic polyimides are well recognized as high temperature linear polymers, and polyimide are used as structural materials, fibers, and adhesive. Two different kinds of polyimide were prepared by theimidization of polyamic acid which were synthesized from 2,2-bis[4-(4-aminophenoxy)phenyl]- hexafluoropropane, 2,2-bis [4-(4-aminophenxy)phenyl] - hexamethylpropane and caprolactam and pyromelliti dianhydride under N-Methly-pyrrolidinone solvent. Polyamic acids were converted to polyimides containing imide bond by thermal imidization. The weight 50% loss temperatures of polyimide by TGA thermogram were recorded in the range of 700 ~ 720$^{\circ}$C in nitrogen gas. According, as a results, we conclued polyamic acid were cycliation after H2O molecule separationed, and this polyimide film could be used for Printed Circuit Boand.

  • PDF

Characterization Study of Acrylic Resin for Bronze Artifacts Conservation as Film Thickness (박막 두께에 따른 청동유물 보존처리용 아크릴 수지의 코팅 특성 연구)

  • Cho, Hyun-Kyung;Cho, Nam-Chul
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.183-197
    • /
    • 2008
  • Paraloid B-72 of acrylic resins has been widely used as consolidant for bronze artifacts conservation. In previous study, xylene was appropriate for paraloid B-72 when bronze artifacts consolidated. In this study, we compared the coating properties of paraloid B-72 in various concentration levels. The surface before and after coating were observed by optical microscope and AFM. Thickness and adhesive strength of films were tested. For testing coating stability, we performed yellowing test and EIS. After these experiments, we concluded 15wt% paraloid B-72 was adequate concentration for bronze artifacts conservation when paraloid B-72 used in xylene as solvent. Because 15wt% paraloid B-72 has the lowest polarity and high hydrophobic.

  • PDF

Micro-tribological Properties of Coated Silicon Wafer (코팅된 실리콘웨이퍼의 Microtribological 특성)

  • 차금환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.91-96
    • /
    • 1998
  • In recent years, the tribological behavior of coated ceramic material has been the topic of much interest. Particularly, the understanding of the tribological performance of thin film under light load is important for potential applications in MEMS. In this work under light load and low speed, the tribological behavior of coated silicon was investigated. The results show that both adhesive and abrasive wear occur depending on the sliding condition. Also the effect of humidity on friction was influenced by the apparent ares of contact between the two surfaces. Finally, undulations on the silicon wafer were found to be effective in trapping wear particles.

  • PDF

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.195-199
    • /
    • 2015
  • Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

Fabrication of a CNT Filter for a Microdialysis Chip

  • An, Yun-Ho;Song, Si-Mon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 2006
  • This paper describes the fabrication methods of a carbon nanotube (CNT) filter and a microdialysis chip. A CNT filter can help perform dialysis on a microfluidic chip. In this study, a membrane type of a CNT filter is fabricated and located in a microfluidic chip. The filter plays a role of a dialysis membrane in a microfluidic chip. In the fabrication process of a CNT filter, individual CNTs are entangled each other by amide bonding that is catalyzed by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The chemically treated CNTs are shaped to form a CNT filter using a PDMS film-mold and vacuum filtering. Then, the CNT filter is sandwiched between PDMS substrates, and they are bonded together using a thin layer of PDMS prepolymer as adhesive. The PDMS substrates are fabricated to have a microchannel by standard photo-lithography technique.