• Title/Summary/Keyword: Adhesion protein 33

Search Result 22, Processing Time 0.021 seconds

Synergistic Effects of PectaSol-C Modified Citrus Pectin an Inhibitor of Galectin-3 and Paclitaxel on Apoptosis of Human SKOV-3 Ovarian Cancer Cells

  • Hossein, Ghamartaj;Keshavarz, Maryam;Ahmadi, Samira;Naderi, Nima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7561-7568
    • /
    • 2013
  • Galectin-3 (Gal-3) is a carbohydrate-binding protein which is thought to be involved in cancer progression but its contribution to epithelial ovarian cancer (EOC) remains unclear. The present study sought to determine the role of Gal-3 in chemoresistance of the human SKOV-3 ovarian cancer cell line to paclitaxel (PTX) using recombinant human Gal-3 (rhGal-3) and PectaSol-C modified citrus pectin (Pect-MCP) as a specific Gal-3 competitive inhibitor. Our results showed 41% increased cell proliferation, 36% decreased caspase-3 activity and 33.6% increased substrate-dependent adhesion in the presence of rhGal-3 compared to the control case (p<0.001). Treatment of cells with a non-effective dose of PTX (100nM) and 0.1% Pect-MCP in combination revealed synergistic cytotoxic effects with 75% reduced cell viability and subsequent 3.9-fold increase in caspase-3 activity. Moreover, there was 39% decrease in substrate-dependent adhesion compared to control (p<0.001). These results suggest that inhibition of Gal-3 could be a useful therapeutic tool for combination therapy of ovarian cancer.

Detrimental effects of lipopolysaccharide on the attachment and outgrowth of various trophoblastic spheroids on human endometrial epithelial cells

  • Kim, Wontae;Choi, Jungwon;Yoon, Hyejin;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.132-141
    • /
    • 2021
  • Objective: Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation. Methods: Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS. Results: LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 ㎍/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation. Conclusion: An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.

Comparative Analysis on the Cytotoxicity of Naegleria fowleri and N. gruberi to Macrophages by the Addition of Saccharides

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • To elucidate the invasion mechanism of pathogenic Naegleria fowleri, especially a receptor-ligand recognition, we investigated the in vitro cytotoxicity of pathogenic N. fowleri and nonpathogenic N. gruberi to murine macrophages, RAW 264.7, by adding four kinds of saccharides, ${\alpha}$-fucose, ${\beta}$-galactose, ${\alpha}$-D-mannopyranoside (${\alpha}$-mannose) and xylose. There was not enough of a difference in the cytotoxicity of N. fowleri treated with 10 mM of each saccharide. In particular, the cytotoxicity of N. fowleri was highly inhibited by 100 mM ${\alpha}$-mannose, which was 62.3% inhibition calculated by the analysis of lactate dehydrogenase (LDH) release assay. Although murine macrophages were not significantly destroyed by nonpathogenic N. gruberi under hematoxylin staining, the cytotoxicity of N. gruberi was inhibited from 31.5% to 14.5% (P<0.01) by 100 mM ${\alpha}$-mannose treatment. The binding of N. fowleri to macrophages was inhibited from 33% to 50% by 100 mM ${\alpha}$-mannose. Furthermore, as results of the adhesion assays which were performed to determine whether binding of Naegleria is mediated by saccharides-binding protein, the binding ability of N. fowleri as well as N. gruberi was inhibited by 100 mM ${\alpha}$-mannose.

Comparative Analysis of Src Activity in Plasma Membrane Subdomains via Genetically Encoded FRET Biosensors (유전적으로 암호화된 FRET 바이오센서를 통한 세포막 하위 도메인의 Src 활성 비교 분석)

  • Gyuho Choi;Yoon-Kwan Jang;Jung-Soo Suh;Heonsu Kim;Sanghyun Ahn;Tae-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.191-198
    • /
    • 2023
  • As a member of the focal adhesion complex of the plasma membrane, Src is a nonreceptor tyrosine kinase that controls cell adhesion and motility. However, how Src activity is regulated in the plasma membrane microdomain in response to components of the extracellular matrix (ECM) remains unclear. This study compared and investigated the activity of Src in response to three representative ECM proteins: collagen type 1, fibronectin, and laminin. Genetically encoded FRET-based Src biosensors for plasma membrane subdomains were used. FRET-based biosensors allow the real-time analysis of protein activity in living cells based on their high spatiotemporal resolution. The results showed that Src activity was maintained at a high level under all ECM conditions of the lipid raft, and there was no significant difference between the ECM conditions. In contrast, Src activity was maintained at a low level in the non-lipid raft membrane. In addition, the Src activity of lipid rafts remained significantly higher than that of non-lipid raft regions under the same ECM conditions. In conclusion, this study demonstrates that Src activity can be controlled differently by lipid rafts and non-lipid raft microdomains.

Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

  • Cho, Oyeon;Hwang, Hye-Sook;Lee, Bok-Soon;Oh, Young-Taek;Kim, Chul-Ho;Chun, Mison
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.328-336
    • /
    • 2015
  • Purpose: Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Materials and Methods: Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). Results: This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. Conclusion: These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

Biophysical Feature, Crystallization and X-ray Crystallographic Studies of Toxascaris leonina Galectin

  • Sung, Min-Kyung;Jeong, Mi-Suk;Lee, Woo-Chul;Song, Jeong-Hyun;Kim, Hye-Yeon;Cho, Min-Kyoung;Yu, Hak-Sun;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.227-232
    • /
    • 2012
  • Galectins are generally believed to be potential candidates for use in the development of novel antiinflammatory agents or as selective modulators of the immune response. In particular, galectin-9 exhibits some of the extracellular functions, including cell aggregation, adhesion, chemoattraction, activation, and apoptosis. Tl-galectin (Tl-gal, galectin-9 homologue gene) was isolated from an adult worm of the Toxascaris leonina. The full-length Tl-gal gene, which was incorporated into pET-28a, was overexpressed in E. coli and purified by nickel affinity and gel filtration chromatographies. The purified Tl-gal was crystallized using the hangingdrop vapor-diffusion method. The crystal belonged to the tetragonal space group $P4_1$, with unit-cell parameters of a = b = $75.7\AA$ and c = $248.4\AA$. The crystals were obtained at $20^{\circ}C$ and diffracted to a resolution of $3.0\AA$. The asymmetric unit contained four molecules of Tl-gal, which gave a crystal volume per protein mass (Vm) of $2.8\AA^3Da^{-1}$ and a solvent content of 54.1%.

The Effect of the Plasma Treatment on PLGA Scaffold for Adhesion and Chondrogenic Differentiation of Human Adipose-derived Stromal Cells (인체지방유래 간질세포의 부착 및 연골분화유도를 위한 PLGA 지지체의 플라즈마 처리 효과)

  • Dong, Chun Ji;Jun, Young Joon;Cho, Hyun Mi;Oh, Deuk Young;Han, Dong Keun;Rhie, Jong Won;Ahn, Sang Tae
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.46-52
    • /
    • 2006
  • High-density micromass culture was needed to take three dimensions culture with ASCs(adipose derived stromal cells) and chondrogenesis. However, the synthetic polymer has hydrophobic character and low affinity to cells and other biomolecules. Therefore, the surface modification without changes of physical and chemical properties is necessary for more suitable condition to cells and biomolecules. This study was performed to investigate the effect of surface modification of poly (lactic-co-glycolic acid)(PLGA) scaffold by plasma treatment (P(+)) on the adhesion, proliferation and chondrogenesis of ASCs, and not plasma treatment (P(-)). ASCs were isolated from human subcutaneous adipose tissue obtained by lipectomy and liposuction. At 1 hour 30 minutes and 3days after cell seeding onto the P(-) group and the P(+) group, total DNA amount of attached and proliferated ASCs markedly increased in the P(+) group (p < 0.05). The changes of the actin under confocal microscope were done for evaluation of cellular affinity, at 1 hour 30 minutes, the shape of the cells was spherical form in all group. At 3rd day, the shape of the cells was fiber network form and finely arranged in P(+) group rather than in P(-) group. RT-PCR analysis of cartilage-specific type II collagen and link protein were expressed in 1, 2 weeks of induction. Amount of Glycoaminoglycan (GAG) markedly increased in P(+) group(p < 0.05). In a week, extracellular matrix was not observed in the Alcian blue and Safranin O staining. However in 2 weeks, it was observed that sulfated proteoglycan increased in P(+) group rather than in P(-) group. In conclusion, we recognized that plasma treatment of PLGA scaffold could increase the hydrophilic property of cells, and provide suitable environment for high-density micromass culture to chondrogenesis

Expression of Human Immunodeficiency Virus Type 1 Tat Proteins in Escherichia coli and Application to Study Tat Functions

  • Park, Jin-Seu;Lee, Han-Gyu;Lee, Yoon;Kang, Young-Hee;Rhim, Hyang-Shuk;Choi, Soo-Young
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.337-343
    • /
    • 2000
  • The human immunodeficiency virus type 1 (HIV-1), transactivator of transcription (Tat), is one of the viral gene products that is essential for HIV-1 replication. The HIV-l Tat protein regulates transcription from an HIV-1 long terminal repeat (LTR) and affects the gene expression of cellular proteins during infection. In order to develop an expression system to overexpress and simply purify HIV-1 Tat proteins, the HIV-1 Tat coding sequences that contain one or two exons were amplified using PCR and cloned into a pET vector, which contains a consecutive stretch of six histidine residues at the amino-terminus. The reconstituted vectors were overexpressed in the E. coli strain and the soluble recombinant proteins were purified to be homogeneity in a single step by $Ni^{+2}-nitrilotriacetic$ acid Sepharose chromatography under nondenaturing conditions. Recombinant HIV-1 Tat proteins were shown to transactivate the HIV-1 LTR promoter in a dose-dependent manner when introduced into mammalian cells. In addition, treatment of human endothelial cells with purified Tat proteins resulted in a significant increase in the level of vascular cell adhesion molecule-1 (VCAM-1) expression. These results indicate that the recombinant HIV-1 Tat proteins are active in transactivating viral and cellular promoters. The expression and purification system described in this study will facilitate in characterizing the biological functions of the Tat proteins.

  • PDF

Loss of FAT Atypical Cadherin 4 Expression Is Associated with High Pathologic T Stage in Radically Resected Gastric Cancer

  • Jung, Hae Yoen;Cho, Hyundeuk;Oh, Mee-Hye;Lee, Ji-Hye;Lee, Hyun Ju;Jang, Si-Hyong;Lee, Moon Soo
    • Journal of Gastric Cancer
    • /
    • v.15 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • Purpose: Recent studies have revealed recurrent alterations in the cell adhesion gene FAT4, a candidate tumor suppressor gene, in cancer. FAT atypical cadherin 4 (FAT4) is a transmembrane receptor involved in the Hippo signaling pathway, which is involved in the control of organ size. Here, we investigated the loss of FAT4 expression and its association with clinicopathological risk factors in gastric cancer. Materials and Methods: We assessed the expression of FAT4 by using immunohistochemistry on three tissue microarrays containing samples from 136 gastric cancer cases, radically resected in the Soonchunhyang University Cheonan Hospital between July 2006 and June 2008. Cytoplasmic immunoexpression of FAT4 was semi-quantitatively scored using the H-score system. An H-score of ${\geq}10$ was considered positive for FAT4 expression. Results: Variable cytoplasmic expressions of FAT4 were observed in gastric cancers, with 33 cases (24.3%) showing loss of expression (H-score <10). Loss of FAT4 expression was associated with an increased rate of perineural invasion (H-score <10 vs. ${\geq}10$, 36.4% vs. 16.5%, P=0.015), high pathologic T stage (P=0.015), high tumor-node-metastasis stage (P=0.017), and reduced disease-free survival time (H-score <10 vs. ${\geq}10$, mean survival $62.7{\pm}7.3$ months vs. $79.1{\pm}3.1$ months, P=0.025). However, no association was found between the loss of FAT4 expression and tumor size, gross type, histologic subtype, Lauren classification, lymphovascular invasion, or overall survival. Conclusions: Loss of FAT4 expression appears to be associated with invasiveness in gastric cancer.

Grafting and Characterization of Zwitter Ionic Poly(ethylene glycol) on Gold-Coated Nitinol Surface Chemisorbed with L-Cysteine (시스틴으로 화학흡착된 금 코팅 니티놀 표면에 앙쪽성 이온 폴리에틸렌글리콜의 그래프트 및 특성 평가)

  • Shin, Hong-Sub;Park, Kwi-Deok;Kim, Jae-Jin;Kim, Ji-Heung;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.84-90
    • /
    • 2009
  • Nitinol alloy (TiNi) has been widely used in vascular stents. To improve the blood compatibility of Nitinol alloy, its surface was chemically modified in this study. Nitinol was first coated with gold, then chemisorbed with L-cysteine (C/N), and followed by grafting of zwitter ionic poly(ethylene glycol) (PEG) (PEG-$N^+-SO_3{^-}$) to produce TiNi-C/N-PEG-N-S. The zwitter ionic PEG grafted on the Nitinol surface was identified by ATR-FTIR, ESCA and SEM. The hydrophilized surface was proven by the decrease of water contact angle. In addition, from the blood compatibility tests such as protein adsorption, platelet adhesion, and blood coagulation time, the surface-modified TiNi alloy exhibited a better blood compatibility as compared to the untreated Nitinol control. These results indicated a feasibility of synergistic effect of hydrophilic PEG and antithrombotic zwitter ion.