• 제목/요약/키워드: Adhesion promotion

검색결과 29건 처리시간 0.025초

Plasma and VUV Pretreatments of Polymer Surfaces for Adhesion Promotion of Electroless Ni or Cu Films

  • Romand, M.;Charbonnier, M.;Goepfert, Y.
    • 접착 및 계면
    • /
    • 제4권2호
    • /
    • pp.10-20
    • /
    • 2003
  • This paper is relative to the electroless deposition of nickel or copper films on polyimide and polytetrafluoroethylene substrates. First, it is presented an original approach of the electroless process which consists in grafting nitrogenated functionalities on the polymer surfaces via plasma or VUV-assisted treatments operating in a nitrogen-based atmosphere ($NH_3$, $N_2$), and then in catalysing the grafted surfaces in an aqueous tin-free, Pd(+2)-based solution. Adhesion of the Pd(+2) catalytic species on polymer surfaces is explained by the formation of strong covalent bonds between these species and the grafted nitrogenated groups. Second, it is show how a fragmentation test performed in conjunction with electrical measurements can be used to characterize the practical adhesion of the electroless coatings deposited on flexible polymer substrates, and to evidence the influence of some experimental parameters (plasma treatment time and nature of the gas phase).

  • PDF

Properties of Inkjet and Screen Printed Circuits with Substrate Treatments

  • 이민수;김용욱;김영훈;유의덕
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.4.1-4.1
    • /
    • 2011
  • Recently, circuit printing technology has been considered as a promising alternative to conventional PCB fabrication, for it can greatly reduce the manufacturing costs. Even though printed circuit has many advantages over typical subtractive technology such as fewer processes, it has some disadvantages. The major problems are low adhesion and poor resolution. Efforts to overcome these problems have been mainly focused on ink developments with a limited success. And surface treatments showed some improvements. Therefore, various plasma treatments and primer coatings on plastic substrates have been tested. Plasma treatments using hydrocarbon gases including methane and propane improved the pattern quality of the inkjet printed circuit, which are further improved upon heating of substrate. On the other hand, there is little effect on the adhesion, which is improved only by a special primer coating. The adhesion of inkjet printed circuit has been increased more than 10 times upon treatment. As for the screen printed circuits, the overall effects are less significant since there is some organic binder in the ink. Nonetheless, the treatment has strong positive effects on pattern quality and adhesion. The adhesion of 1 kgf/cm2, which is comparable with those of the conventional PCB circuits, is possible through primer coating for both screen and inkjet printed circuits. The resulting circuit also showed good thermal, mechanical and electrical properties.

  • PDF

생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발 (Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring)

  • 김다완
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.749-754
    • /
    • 2022
  • 다양한 의료 응용 분야에서 웨어러블 및 피부 부착형 전자 패치에 피부 표면의 높은 접착력과 내수성이 요구된다. 본 연구에서는 탄소 기반 전도성 고분자 복합 소재에 개구리 발바닥의 육각 채널와 문어 빨판의 흡착 구조 패턴을 모사한 신축성 있는 전자 패치를 보고한다. 개구리의 발바닥을 모사한 육각 채널 구조는 수분을 배수하며, 균열억제 효과를 통해 점착력을 향상 시키며, 문어 빨판을 모사한 흡착 구조는 젖은 표면에서 높은 점착력을 나타낸다. 또한 고점착 전자패치는 실리콘(max. 4.06 N/cm2), 피부 복제 표면(max. 1.84 N/cm2) 등 다양한 표면에 건조 및 젖은 조건에서 우수한 접착력을 가지고 있다. 고분자 매트릭스와 탄소 입자를 기반으로한 고분자 복합소재를 통해 제작된 고점착 전자 패치는 건조 및 습한 환경에서 심전도(ECG)을 안정적으로 감지할 수 있다. 이 연구에서 보여진 특성을 기반으로 제안된 전자 패치는 다양한 생체 신호의 진단을 위한 웨어러블 및 피부 부착 센서 디바이스를 구현하는 잠재적 응용 가능성을 제시한다.

Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향 (Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate)

  • 민경진;박영배
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.

콘크리트 박스 구조물용 보수재의 부착강도 향상을 위한 기계식 가압장비(MPE) 성능에 관한 연구 (A Study on the Performance of Mechanical Pressurizing Equipment(MPE) for Improving Bond Strength of Repair Materials for Concrete Box Structures)

  • 유형식;정지승
    • 문화기술의 융합
    • /
    • 제6권1호
    • /
    • pp.477-483
    • /
    • 2020
  • 콘크리트 박스 구조물이 열화되어 보수보강이 필요할 경우 스프레이 장비로 구조물 단면에 보수재를 분사하여 부착시키는 방법에 의존하고 있는데 천장 또는 벽체부위의 경우 시공 후 보수재 자중 또는 중력에 의해 부착력이 저하될 수 있으며 지하철 구조물의 경우 진동 등에 의해 초기 부착력이 떨어지는 문제점이 발생한다. 또한 작업자의 숙련도와 시공환경에 따라 보수품질이 변동되기에 이에 대한 보완책이 필요한 실정이다. 본 연구에서는 중력에 의한 보수재의 부착력 저하 및 인력시공에 의한 보수품질의 변동과 같은 문제점을 해결하고자 보수재 시공 후 소정의 압력을 가할 수 있는 기계식 가압장비를 개발하였다. 그리고 가압장비의 성능을 알아보고자 현장조건을 모사할 수 있는 챔버를 제작하여 가압 유무, 단면부위 및 환경조건을 달리한 부착강도를 측정한 결과 가압할 경우 그렇지 않은 경우보다 부위별로 차이가 있었으나 최대 70% 부착강도가 증가하는 효과를 얻을 수 있었다.

젖은 표면 파지용 로봇 그리퍼 응용을 위한 하이브리드 계면 구조 개발 (Development of hybrid interfacial structure on wet surfaces for robotic gripper applications)

  • 김다완
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.685-690
    • /
    • 2022
  • 연질 접착제에 대한 최근의 연구는 그들의 화학적 또는 기계적 구조가 살아있는 조직과 어떻게 강하게 상호작용하는지를 깊이 이해하고자 했다. 그 목적은 급성 또는 만성 질환 환자의 충족되지 않은 요구를 최적으로 해결하는 것이다. 정전기(수소 결합)와 기계적 상호 작용(모세관 보조 흡입 스트레스)을 모두 포함하는 시너지 접착은 조직에 대한 장기간의 불안정한 결합과 관련된 과제를 극복하는 데 효과적인 것으로 보인다. 본 연구에서는 화학 잔류물이 없는 접착의 정전적이고 기계적으로 시너지 메커니즘을 기반으로 한 로봇 그리퍼 인터페이스용 하이브리드 구조를 보고한다. 메커니즘을 추론하기 위해 하이브리드 구조를 기반으로 한 열역학적 모델을 분석하였다. 모델은 엘라스토머 구조에 내장된 하이드로젤의 열역학적으로 제어된 팽창이 습한 표면과의 지속가능한 접착력 향상과 박리 방향의 화학적 잔류물 없는 탈착력을 향상시킨다는 실험 결과를 뒷받침했다.

Osteopontin과 신장 발달 (Osteopontin and Developing Kidney)

  • 임형은;유기환
    • Childhood Kidney Diseases
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2006
  • Osteopontin (OPN) is a glycosylated phosphoprotein which mediates cell adhesion and migration, and is produced by bone, macrophages, endothelial cells, and epithelial cells. The many regulatory functions of OPN include bone remodeling, tumor invasion, wound repair, and promotion of cell survival. It is produced by renal tubular epithelial cells, and expression is upregulated in glomerulonephritis, hypertension, ischemic acute renal failure, renal ablation, and UUO. In this review, we discuss about osteopontin in general aspect, expression, role on the development and pathologic condition of neonatal kidney.

  • PDF

Mda-9/syntenin Promotes Human Brain Glioma Migration through Focal Adhesion Kinase (FAK)-JNK and FAK-AKT Signaling

  • Zhong, Dong;Ran, Jian-Hua;Tang, Wen-Yuan;Zhang, Xiao-Dong;Tan, Yun;Chen, Gui-Jie;Li, Xiao-Song;Yan, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2897-2901
    • /
    • 2012
  • Invasion is usually recognized as the main reason for the high recurrence and death rates of glioma and restricts the efficacy of surgery and other therapies. Therefore, we aimed to investigate the mechanism involved in promotion effects of mda-9/syntenin on human glioma cell migration. The wound healing method was used to test the migration ability of human glioma cells CHG-5 and CHG-hS, stably overexpressing mda-9/syntenin. Western blotting was performed to determine the expression and phosphorylation of focal adhesion kinase (FAK) and JNK in CHG-5 and CHG-hS cells. The migration ability of CHG-hS cells was significantly higher than that of CHG-5 cells in fibronectin (FN)-coated culture plates. Phosphorylation of FAK on tyrosine 397, 576, and 925 sites was increased with time elapsed in CHG-hS cells. However, phosphorylated FAK on the tyrosine 861 site was not changed. Phosphorylated Src, JNK and Akt levels in CHG-hS cells were also significantly upregulated. Phosphorylation of JNK and Akt were abolished by the specific inhibitors SP600125 and LY294002, respectively, and the migration ability of CHG-hS cells was decreased, indicating that the JNK and PI3K/Akt pathways play important roles in regulating mda-9/syntenin-induced human brain glioma migration. Our results indicate Mda-9/syntenin overexpression could activate FAK-JNK and FAK-Akt signaling and then enhance the migration capacity of human brain glioma cells.

이온빔조사에 의한 생분해성 차폐막의 세포부착력 증진에 관한 연구 (Improved cell adhesion to ion beam-irradiated biodegradable membranes)

  • 이용무;박윤정;이승진;구영;류인철;한수부;최상묵;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제28권4호
    • /
    • pp.601-611
    • /
    • 1998
  • Ion irradiation is a very promising tool to modify the chemical structure and physical properities of polymers. This study was aimed to evaluate the cellular adhesion to ion beam-irradiated surface of biodegradable poly-l-lactide(PLLA) membrane. The PLLA membrane samples were irradiated by using 35 KeV $Ar^+$ to fluence of $5{\times}10^{13}$, $5{\times}10^{14}$ and $5{\times}10^{15}\;ion/cm^2$. Water contact angles to control and each dose of ion beam-irradiated PLLA membranes were measured. Cultured fetal rat calvarial osteoblasts were seeded onto control and each dose of ion beam-irradiated PLLA membranes and cultured. After 24 hours, each PLLA membranes onto which osteoblasts attached were examined by scanning electron microscopy(SEM). Osteoblasts were removed from each PLLA membrane and then, the vitality and the number of cells were calibrated. Alkaline phosphatase of detached cells from each PLLA membranes were measured. Ion beam-irradiated PLLA membranes showed no significantly morphological change from control PLLA membranes. In the measurement of water contact angle to each membrane, the dose range of ion beam employed in this study reduced significantly contact angles. Among them, $5{\times}10^{14}\;ion/cm^2$ showed the least contact angle. The vitalities of osteoblastes detached from each membranes were confirmed by flow cytometer and well attached cells with their own morphology onto each membranes were observed by SEM. A very strong improvement of the cell adhesion and proliferation was observed for ion beam-irradiated surfaces of PLLA membranes. $5{\times}10^{15}\;ion/cm^2$ exhibited the most strong effect also in cellular adherence. ALPase activities also tended to increase in ion beam-irradiated membranes but statistical differences were not found. These results suggested that ion beam irradiation is an effective tool to improve the adhesion and spreading behaviour of the cells onto the biodegradable PLLA membranes for the promotion of membrane-tissue integration.

  • PDF

Anti-adherence of Antibacterial Peptides and Oligosaccharides and Promotion of Growth and Disease Resistance in Tilapia

  • Peng, K.S.;She, R.P.;Yang, Y.R.;Zhou, X.M.;Liu, W.;Wu, J.;Bao, H.H.;Liu, T.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.569-576
    • /
    • 2007
  • Four hundred and fifty tilapias ($6.77{\pm}0.23$ g) were assigned randomly to six groups to evaluate the feasibility of the tested antibacterial peptides (ABPs) and oligosaccharides as substitutes for antibiotics. The control group was fed with a commercial tilapia diet; other five groups were fed with the same commercial diet supplemented with konjac glucomannan (KGLM), cluster bean galactomannan (CBGAM), and three animal intestinal ABPs derived from chicken, pig and rabbit at 100 mg/kg respectively. After 21 days of feeding, growth, disease resistance, and in vivo anti-adherence were determined. Furthermore, the inhibitory effect of tested agents on adhesion of Aeromonas veronii biovar sobria (A.vbs) strain BJCP-5 to tilapia enteric epithelia in vitro was assessed by cell-ELISA system. As a result, the tested agents supplemented at 100 mg/kg show significant benefit to tilapia growth and disease resistance (p<0.05), and the benefit may be correlated with their interfering in the contact of bacteria with host mucosal surface. Although none of the tested agents did inhibit the growth of BJCP-5 in tryptic soy broth at $100{\mu}g/ml$, all of them did inhibit the adhesion of A.vbs to tilapia enteric epithelia in vivo and in vitro. In vitro mimic assays show that three ABPs at low concentrations of $25{\mu}g/ml$ and $2.5{\mu}g/ml$ have the reciprocal dose-dependent anti-adherence effect. The inhibition of ABPs may be correlated with a cation bridging and/or receptor-ligand binding, but not with hydrophobicity. The KGLM and CBGAM inhibited the adherence of BJCP-5 to tilapia enteric epithelia with dose-dependent manner in vitro, and this may be through altering bacterial hydrophobicity and interfering with receptor-ligand binding. Our results indicate that the anti-adherence of the tested ABPs and oligosaccharides may be one of the mechanisms in promoting tilapia growth and resistance to A.vbs.