• Title/Summary/Keyword: Adhesion of E-paint

Search Result 9, Processing Time 0.027 seconds

Adhesion and Corrosion Resistance of Electrophoretic Paint on "Electroless" Paint Coated AZ31 Mg Alloy

  • Phuong, Nguyen Van;Kim, Donghuyn;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.405-414
    • /
    • 2018
  • The present study investigated the adhesion and corrosion resistance of subsequent electrophoretic paint (E-paint) on "electroless" paint coated AZ31 Mg alloy, which was formed by immersion of AZ31 Mg alloy in E-painting solution. It was found that with increasing immersion time of AZ31 in E-painting solution, the amount of paint deposited by electroless process increased but it decreased the electrochemical equivalent of E-painting process and the adhesion of the subsequent E-paint layer. The E-paint on electroless paint coated AZ31 contained pores with the highest pore density and the largest pore size was obtained on the samples with electroless times of 2 and 5 minutes, respectively. Results of the salt-spray test showed an accelerated growth of blisters over the entire surface of the sample immersed for less than 5 minutes whereas blisters were observed only in the vicinity of the scratch in case of samples treated for 15 and 30 minutes. The E-paint on AZ31 with shorter electroless immersion time in E-painting solution was found to have good adhesion and better corrosion resistance.

Deposition and Characterization of Electrophoretic Paint on AZ31 Magnesium Alloy

  • Nguyen, Van Phuong;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • In this study, electrophoretic paint (E-paint) was deposited on the knife-abraded surface of AZ31 magnesium alloy (AZ31), and its adhesion and corrosion resistance were examined by tape peel-test and salt spray test, respectively. E-paint started to deposit on AZ31 Mg alloy after an inductance time and pores were found in the E-paint layer which is ascribed to hydrogen bubbles generated on the surface during the painting process. The pores disappeared after curing for 15 min at $160^{\circ}C$. The E-paint on AZ31 exhibited good adhesion after immersion in deionized water for 500 h at $40^{\circ}C$. The E-paint sample without scratch showed no corrosion after 1500 h of salt spray test. However, on the scratched sample, blisters were visible adjacent to the scratched sites after 500 h of salt spray test.

Effects of Surface Pretreatment on Deposition and Adhesion of Electrophoretic Paint on AZ31 Mg Alloy

  • Nguyen, Van Phuonga;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.72-84
    • /
    • 2017
  • In this work, electrophoretic paint (E-paint) was deposited on AZ31 Mg alloy after four different surface pretreatments: knife abrading, SiC paper abrading, deionized (DI) water immersion and NaOH immersion. The deposition process of E-paint was studied by analyses of voltage-time and current-time curves, amount of deposited paint, current efficiency and surface oxide film resistance and the adhesion of E-paint was examined by tape test before and after immersion in DI water for 500 h at $40$^{\circ}C$. It was found that the induction time for the deposition, the amount of deposited paint and the current efficiency are inversely proportional to the resistances of surface films prepared by different surface pretreatment methods. The electrophoretic painting showed longer inductance time, larger amount of deposited paint and higher current efficiency on the highly conducting surfaces, such as knife-abraded and SiC-abraded surfaces than on the less conducting surfaces, such as DI water-immersed and NaOH-immersed samples. Excellent adhesion was observed on the E-paintings deposited onto knife-abraded and SiC-abraded AZ31 Mg alloy samplesSiC-abraded AZ31 Mg alloy samples.

Effect of Fluoride Conversion Coating on the Corrosion Resistance and Adhesion of E-painted AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.395-400
    • /
    • 2016
  • This article reports improved corrosion resistance and adhesion of electro-paint (E-paint) with fluoride conversion coating (FCC) on AZ31 Mg alloy for the first time. These improvements were observed in comparison to chemically polished samples with no chemical conversion coating and samples with cerium conversion coatings (CeCC). FCCs were prepared in a hydrofluoric acid (HF) solution for four different times; 10, 30, 60, and 120 s. The colour of the samples changed from light gold to brown with increasing immersion time, indicating the formation of thicker FCC coatings with increasing immersion time. The adhesion of the E-paint on FCC-coated AZ31 Mg alloy was tested after 500 h of immersion in deionized (DI) water. Salt spray test (SST) results revealed delamination of E-paint on the chemically polished sample, severe blistering on the samples with CeCC, but no delamination and no blistering on the samples with FCC.

Corrosion and Adhesion of Electrophoretic Paint on AZ31 Magnesium Alloy Pretreated in Cerium Chemical Conversion Coating Solution

  • Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.189-189
    • /
    • 2015
  • In this study, the corrosion resistance and adhesion of electrophoretic paint (E-paint) were studied on AZ31 magnesium alloy pretreated in cerium chemical conversion coating solutions with the addition of various ethanol concentrations. It was found that with increasing ethanol concentration from 0 to 90 percent can decrease the formation of $Mg(OH)_2/MgO$ and increase the formation of nano-crystalline cerium oxides on the coating. Both corrosion resistance and adhesion of E-painted AZ31 increased with increasing ethanol concentration. The best E-paint sample was observed on the sample pretreatment in cerium chemical conversion coating solution with the addition of 80 percent of ethanol. This sample showed an excellent adhesion without paint detached after water immersion test for 500 h at $40^{\circ}C$, and only a few blisters observed at the near scratched sites after 1000 h salt-spray test.

  • PDF

Effect of Pre-immersion Time on Electrophoretic Deposition of Paint on AZ31 Magnesium Alloy

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.45-45
    • /
    • 2014
  • The importance of magnesium alloys has significantly increased due to their low density, high strength/weight ratio, very good electromagnetic shielding features and good recyclability. However, unfortunately, Mg alloys are very susceptible to corrosion due to their high chemically activities (= -2.356 V vs. NHE at $25^{\circ}C$), hence, most commercial Mg alloys require corrosion protective coatings. Organic coating such as painting, powder coating and electrophoretic deposition of paint (E-paint) is typically used in the final stages of the coating process of Mg alloys. In this study, effect of pre-immersion time on the deposition of E-paint on AZ31 Mg alloy was investigated. It was found that during pre-immersion time, AZ31 Mg alloy rapidly reacts with E-paint solution and paint can be self-deposited on the AZ31 surface without applying of electric current. The pore size on the E-painted AZ31 Mg alloy increased with increasing pre-immersion time from 0 to 5 min. Both adhesion and corrosion resistance of E-painted AZ31 Mg alloy decreased with increasing pre-immersion time. The best E-paint AZ31 Mg alloy, which showed stronger adhesion after water immersion test and good corrosion resistance, was started to deposit after 5 s of pre-immersion time.

  • PDF

Effect of Fluoride Conversion Coating on the Corrosion Resistance and Adhesion of E-painted AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.124.2-124.2
    • /
    • 2016
  • Corrosion resistance and adhesion of electro-paint (E-paint) with fluoride conversion coating (FCC) on AZ31 Mg alloy were studied. Corrosion resistance and adhesion were studied as a function of FCC-treatment time and concentration of FCC-bath. Aqueous hydrogen fluoride (HF) solutions, with concentrations ranging from 0.5 M to 5 M, were used to form FCC on chemically polished AZ31 Mg alloy samples for six different times; 10, 30, 60, 90, 120, and 180s. The results from salt spray test (SST) showed that corrosion resistance of E-paint appeared to decrease with increasing FCC treatment times in low concentration FCC baths. The number of blisters formed on the FCC-treated samples increased with increasing FCC treatment time of more than 1 min in low concentration (0.5 M to 1 M) solutions. On the other hand, samples treated in the 5 M HF solution for 120s showed no delamination or blistering even after 1200h of SST.

  • PDF

Deposition and Corrosion Resistance of Electrophoretic Paint Coated on AZ61 and TZ61 Magnesium Alloys

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.32-32
    • /
    • 2015
  • Electrophoretic paint (E-paint) was investigated on four different magnesium substrates: as-extruded AZ61 (AZ61), heat-treated AZ61 (AZ61-H), as-extruded TZ61 (TZ61) and heat-treated TZ61 (TZ61-H), to elucidate the effect of heat treatment and alloying elements on the deposition and corrosion resistance of E-paint. It was found that, a rapid increase of voltage, indicating that the deposition of E-paint had started, was observed after an induction time of 0.39 min for AZ61-H, 0.43 min for AZ61, 0.51 min for TZ61-H and 0.58 min for TZ61. The amount of E-paint deposited on the four samples was approximately similar, but the electrical charge used for the deposition process on the heat-treated samples was smaller than that on the as-extruded samples. The current efficiencies of E-paint on AZ samples (AZ61 and AZ61-H) were higher than those of TZ samples (TZ61 and TZ61-H), and on the heat-treated samples were higher than on as-extruded samples. All E-paintings on the four magnesium substrates had an excellent adhesion without any paint detached by tape peel-test. However, many large blisters were formed on the surface of AZ samples, and none, or very small blisters were observed on TZ samples after immersion test in DI-water for 500 h at $40^{\circ}C$. Under salt spray test (SST) conditions, E-paint on AZ samples showed blistering adjacent to scribes, while blistering of E-paint occurred on intact areas of TZ samples. The E-paint on heat-treated samples showed much better corrosion resistance than that on as-extruded samples. The ranking of greater to lesser corrosion resistance of the E-paint on these four different magnesium substrates is indicated by the order: AZ61-H > AZ61 > TZ61-H > TZ61.

  • PDF

A Study on the Crack Response and Waterproof Properties of High-Functional Water-Based Acrylic Paints for Exterior Walls (고기능성 외벽용 수성 아크릴계 도료의 균열 대응성 및 방수 특성 평가 연구)

  • Kim, Yong-Ro;Ko, Hyo-Jin;Park, Jin-Sang;Kim, Dong-Bum;Lee, Sang-Wook
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.593-604
    • /
    • 2021
  • In this study, a comparative test was conducted on a specially developed elastic waterproof paint and general water-based paint for the purpose of responding to cracks occurring on the outer wall of concrete structures and improving watertightness. Through the comparative experiment, it was confirmed that the watertightness could be improved by securing the crack shielding property, and it was also confirmed that about 10 times more crack responsiveness was secured compared to general water-based paint. In addition, it was confirmed that the adhesion performance of at least 1.3MPa and resistance to a water permeation pressure of 0.1MPa were possible, confirming that stability was secured from a waterproofing perspective.