• Title/Summary/Keyword: Adhesion Test

Search Result 1,103, Processing Time 0.037 seconds

Influence of additional etching on shear bond strength of self-etching adhesive system to enamel (부가적인 산부식이 자가산부식 접착제의 법랑질에 대한 전단결합강도에 미치는 영향)

  • Yoo Sun-Jin;Kim Young-Kyung;Park Jeong-Won;Jin Myoung-Uk;Kim Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.4
    • /
    • pp.263-268
    • /
    • 2006
  • Recently, self-etching adhesive system has been introduced to simplify the clinical bonding proce- dures. It is less acidic compared to the phosphoric acid, thus there is doubt whether this system has enough bond strength to enamel. The purpose of this study was to investigate the influence of additional etching on the adhesion of resin composite to enamel. Ninety extracted bovine permanent anterior teeth were used. The labial surfaces of the crown were ground with 600-grit abrasive paper under wet condition. The teeth were randomly divided into six groups of 15 teeth each. Clearfil SE $Bond^{\circledR},\;Adper^{TM}$ Prompt L-Pop and Tyrian $SPE^{TM}$ were used as self-etching primers. Each self-etching primers were applied in both enamel specimens with and without additional etching. For additional etching groups, enamel surface was pretreated with 32% phosphoric acid (UNI-ETCH, Bisco, Inc., Schaumburg, IL. USA). Hybrid resin composite Clearfil AP-X, (Kuraray Co., Ltd., Osaka, Japan) was packed into the mold and light-cured for 40 seconds. Twenty-four hours after storage, the specimens were tested in shear bond strength. The data for each group were subjected to independent t - test at p < 0.01 to make comparisons among the groups. In Clearfil SE $Bond^{\circledR}$, shear bond strength of additional etching group was higher than no additional etching group (p < 0.01). In $Adper^{TM}$ Prompt L-Pop and Tyrian SPE, there were no significant difference between additional etching and non-etching groups (p > 0.01). In conclusion, self-etching adhesive system with weak acid seems to have higher bond strength to enamel with additional etching, while self-etching adhesive system with strong acid seems not.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

PERIPHERAL NERVE REGENERATION USING POLYGLYCOLIC ACID CONDUIT AND BRAIN-DERIVED NEUROTROPHIC FACTOR GENE TRANSFECTED SCHWANN CELLS IN RAT SCIATIC NERVE (BDNF 유전자 이입 슈반세포와 PGA 도관을 이용한 백서 좌골신경 재생에 관한 연구)

  • Choi, Won-Jae;Ahn, Kang-Min;Gao, En-Feng;Shin, Young-Min;Kim, Yoon-Tae;Hwang, Soon-Jeong;Kim, Nam-Yeol;Kim, Myung-Jin;Jo, Seung-Woo;Kim, Byung-Soo;Kim, Yun-Hee;Kim, Soung-Min;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.465-473
    • /
    • 2004
  • Purpose : The essential triad for nerve regeneration is nerve conduit, supporting cell and neurotrophic factor. In order to improve the peripheral nerve regeneration, we used polyglycolic acid(PGA) tube and brain-derived neurotrophic factor(BDNF) gene transfected Schwann cells in sciatic nerve defects of SD rat. Materials and methods : Nerve conduits were made with PGA sheet and outer surface was coated with poly(lactic-co-glycolic acid) for mechanical strength and control the resorption rate. The diameter of conduit was 1.8mm and the length was 17mm Schwann cells were harvested from dorsal root ganglion(DRG) of SD rat aged 1 day. Schwann cells were cultured on the PGA sheet to test the biocompatibility adhesion of Schwann cell. Human BDNF gene was obtained from cDNA library and amplified using PCR. BDNF gene was inserted into E1 deleted region of adenovirus shuttle vector, pAACCMVpARS. BDNF-adenovirus was multiplied in 293 cells and purified. The BDNF-Adenovirus was then infected to the cultured Schwann cells. Left sciatic nerve of SD rat (250g weighing) was exposed and 14mm defects were made. After bridging the defect with PGA conduit, culture medium(MEM), Schwann cells or BDNF-Adenovirus infected Schwann cells were injected into the lumen of conduit, respectively. 12 weeks after operation, gait analysis for sciatic function index, electrophysiology and histomorphometry was performed. Results : Cultured Schwann cells were well adhered to PGA sheet. Sciatic index of BDNF transfected group was $-53.66{\pm}13.43$ which was the best among three groups. The threshold of compound action potential was between 800 to $1000{\mu}A$ in experimental groups which is about 10 times higher than normal sciatic nerve. Conduction velocity and peak voltage of action potential of BDNF group was the highest among experimental groups. The myelin thickness and axonal density of BDNF group was significantly greater than the other groups. Conclusion : BDNF gene transfected Schwann cells could regenerate the sciatic nerve gap(14mm) of rat successfully.

Adhesion Performance of Plywoods Prepared with Different Layering Methods of Thermoplastic Resin Films (열가소성수지 필름의 적층방법에 따른 합판의 접착성능)

  • Kang, Eunchang;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.559-571
    • /
    • 2017
  • This study was conducted to determine the adhesive performances of plywoods affected by layering direction and the amounts of thermoplastic films. The face and back layers of veneer were hardwood species (Mixed light hardwood) and core layer veneer was radiata pine (Pinus radiata D. Don). Thermoplastic film used as adhesive were polypropylene (PP) film and polyethylene (PE) film. Thermal analysis and tensile strength were investigated on each films. As a result, the melting temperature of PP and PE films were $163.4^{\circ}C$ and $109.7^{\circ}C$, respectively, and the crystallization temperature were $98.9^{\circ}C$ and $93.6^{\circ}C$, respectively. Tensile strength and elongation of each films appeared higher on the width direction than length direction. Considering the characteristics of the thermoplastic films, the test for the amount of film used was carried out by layering film to the target thickness on veneer. The effecting of layering direction of film on plywood manufacturing was conducted by laminating in the length and width directions of the film according to the grain direction of veneer. Tensile-shear strength of plywood in wet condition was satisfied with the quality standard (0.7 MPa) of KS F 3101 when the film was used over 0.05 mm of PP film and over 0.10 mm of PE film. Tensile-shear strength of plywood after cyclic boiling exceeded the KS standard when PP film was used 0.20 mm thickness. Furthermore, higher bonding strength was observed on a plywood made with width direction of film according to grain direction of veneer than that of length direction of film. Based on microscopic analysis of the surface and bonding line of plywood, interlocking between veneers by penetration of a thermoplastic film into inner and cracks were observed.

A Study on the Material Characteristics and Functionality Evaluation of a Size Layer of a Canvas (캔버스 차단층(Size Layer)의 재료특성 및 기능평가 연구)

  • Kim, Hwan Ju;Lee, Hwa Soo;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.167-178
    • /
    • 2016
  • Despite the size layer is an important part for conserving the artworks in the configuration of oil painting, the conservation scientific approaches of that have not been made yet. Therefore, this study produced standard samples on the basis of the analysis results of oil painting works, and carried out the evaluation of functions of the size layer materials. As a result of literature material, traditionally, animal glue was used for the size layer, whereas synthetic resin have been used in combination with animal glue since the modern age, in particular, it was identified that Polyvinyl Acetate(PVAc) was in general use. As a result of analysis of oil painting works, size layer was detected on the support and it was identified as animal glue. As a result of analysis based on Funaoka canvas for ground, it showed that the lead oxide and the titanium dioxide were the main constituents. On the basis of these results, standard samples were produced. As a result of evaluation on the functions of the size layer materials, in the case of the animal glue, stable result was observed in the shrinkag expansion rate, whereas slight weakness was observed in moisture proofing, color, and tensile strength, and dense cracks were found on surface. As for PVAc(A), moisture proofing, color, and the tensile strength exhibited stable results. Higher shrinkage rate was observed and the cracks with wide gaps were found on surface. As for PVAc(B), tensile strength, shrinkage expansion rate, and surface observation showed stable results, whereas moisture proofing property showed poor results. Different aspects were observed in each experiment, and this phenomena were considered to be due to the density and the adhesion properties between the hydrophilic and hydrophobic molecules in the size layer materials. The results are expected to be used as materials for the oil painting work conservation henceforth.

INFLUENCE OF A SODIUM HYPOCHLORITE GEL ON MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS (차아염소산 나트륨의 사용이 복합레진 수복물의 미세누출에 미치는 영향)

  • Yang, Kye-Sik;Kim, Dae-Eop;Lee, Kwang-Hee;Jeong, Young-Nam
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • This study evaluated the influence of chemomechanical caries removal agent $Carisolv^{TM}$(MediTeam, Sweden) for composite resin adhesion to sound human permanent and primary dentin. The buccal/labial surfaces of 80 permanent molars and 80 primary incisors were used. Four types of adhesives and one composite resin were used; AQ Bond(Sun Medical, Japan), Clearfil SE Bond(Kuraray, Japan), Single Bond(3M, USA), Scotchbond Multi-Purpose(3M, USA) and Z100(3M, USA). One drop of $Carisolv^{TM}$(MediTeam, Sweden) was pretreated on the dentin for 0 second(control) and 60 seconds. The specimens were thermocycled for 1,000 times in baths kept 5 degrees C and 55 degrees C with a 30 seconds dwell time. Shear bond strengths were tested and the data was statistically analyzed using one-way ANOVA with subsequent post hoc Scheffe test at p<0.05. $Carisolv^{TM}$ treatment significantly decreased the shear bond strength. Shear bond strength of permanent dentin was significantly higher than that of primary dentin. Clearfil SE Bond treatment groups showed the highest shear bond strength and AQ Bond treatment groups showed the lowest shear bond strength.

  • PDF

Expression of Osteopontin in Eutopic and Ectopic Endometrial Tissues in Endometriosis (자궁내막증 환자의 정상위치 및 이소성 자궁내막에서의 Osteopontin의 발현)

  • Koo, Yun-Hee;Kim, Chung-Hoon;Kim, Ji-Sun;Lee, Young-Jin;Kim, Sung-Hoon;Chae, Hee-Dong;Kang, Byung-Moon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.3
    • /
    • pp.149-157
    • /
    • 2007
  • Objective: This study was performed to compare the expression of osteopontin (OPN) mRNA and protein in the eutopic and ectopic endometrial tissues in women with endometriosis and endometrial tissues in women without endometriosis. Methods: A total of 32 women with histologically confirmed endometriosis were recruited for study group. For controls, 34 women undergoing operative treatment for cervical intraepithelial neoplasia (CIN) or benign gynecologic condition other than endometriosis were recruited. At the time of laparoscopy or laparotomy, a biopsy specimen was taken from the endometrial cavity and peritoneal endometrial implant or endometrioma whenever appropriate. We employed real time quantitative RT-PCR to quantify OPN mRNA expression of these tissues and performed western blot analysis to measure the quantity of OPN. Results: The expression of OPN mRNA was significantly higher in both eutopic and ectopic endometrial tissues of women with endometriosis than in endometrial tissues of controls during both proliferative and secretory phase. In the eutopic endometrial tissue of women with endometriosis, OPN mRNA expression significantly increased during the secretory phase compared to the proliferative phase in women with endometriosis as well as controls. However, in the ectopic endometrial tissue, OPN mRNA expression significantly decreased during the secretory phase compared to the proliferative phase. The expression of OPN protein was significantly higher in women with endometriosis than in controls. Conclusion: This study shows the marked expression of OPN mRNA and protein in eutopic and ectopic endometrial tissues in women with endometriosis may be associated with the adhesion and invasion of endometrial explants.

Effects of laser-irradiated dentin on shear bond strength of composite resin (레이저 처리가 상아질과 복합 레진의 결합에 미치는 영향)

  • Kim, Sung-Sook;Park, Jong-Il;Lee, Jae-In;Kim, Gye-Sun;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.520-527
    • /
    • 2008
  • Purpose: This study was conducted to evaluate the shear bond strength of composite resin to dentin when etched with laser instead of phosphoric acid. Material and methods: Recently extracted forty molars, completely free of dental caries, were embedded into acrylic resin. After exposing dentin with diamond saw, teeth surface were polished with a series of SiC paper. The teeth were divided into four groups composed of 10 specimens each; 1) no surface treated group as a control 2) acid-etched with 35%-phosphoric acid 3) Er:YAG laser treated 4) Er,Cr:YSGG laser treated. A dentin bonding agent (Adapter Single Bond2, 3M/ESPE) was applied to the specimens and then transparent plastic tubes (3 mm of height and diameter) were placed on each dentin. The composite resin was inserted into the tubes and cured. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours and the shear bond strength was measured using a universal testing machine (Z020, Zwick, Germany). The data of tensile bond strength were statistically analyzed by one-way ANOVA and Duncan's test at ${\alpha}$= 0.05. Results: The bond strengths of Er:YAG laser-treated group was $3.98{\pm}0.88$ MPa and Er,Cr:YSGG laser-treated group showed $3.70{\pm}1.55$ MPa. There were no significant differences between two laser groups. The control group showed the lowest bond strength, $1.52{\pm}0.42$ MPa and the highest shear bond strength was presented in acid-etched group, $7.10{\pm}1.86$ MPa (P < .05). Conclusion: Laser-etched group exhibited significantly higer bond strength than that of control group, while still weaker than that of the phosphoric acid-etched group.

MEASUREMENT OF ADHESION OF ROOT CANAL SEALER TO DENTINE AND GUTTA-PERCHA (상아질과 Gutta-Percha에 대한 근관충전용 Sealer의 결합강도의 측정)

  • Her, Mi-Ja;Yu, Mi-Kyung;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.89-99
    • /
    • 2003
  • The purpose of this study was to investigate the bonding of resin- based root canal sealer, AH26 when the sealer was applied as a thin layer between dentine and gutta-percha surface. In this study forty non-caries extracted human molars and resin-based root canal sealer(AH 26, DeTrey/Dentsply, Germany) were used. Disks of gutta-percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for thermoplastic obturation were used and dentin surfaces were treated with 2% NaOCl(Group 1) or 2%NaOCl+17% EDTA(Group 3). Disks of gutta-Percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for conventional obturation were used and dentin surface were treated with 2% NaOCl(Group 2) or 2%NaOCl+17% EDTA(Group 4). Enamel was removed by a horizontal section 1mm below the deepest portion of the central occlusal groove by using a watercooled low speed diamond saw. A second horizontal section was done around cementoenamel junction. Exposed dentin surface was cut to approximately $8{\times}8{\;}mm$ rectangular shape and was ground against 320, 400, 600 grade silicon carbide abrasive paper serially. After grinding, the dentine surface were soaked in a solution of 2% NaOCl for 30 minutes and twenty of specimens were treated with 17% EDTA solution for 1 minute. The treated specimens were washed and dried, Root canal sealer, AH26 was prepared according to the manufacture's instructions The Gutta-percha and dentin surface were coated with a thin layer of the freshly mixed seal or. The specimens were left overnight at room temperature. After their initial set, they were transferred to an incubator at $37$^{\circ}C$ for 72 h. After 72 hours, resin blocks were made. The resin block was serially sectioned vertically into stick of $1{\cdot}1mm$. Twenty sticks were prepared from each group. After that, tensile bond strength f3r each stick was measured with Microtensile Tester Failure patterns of the specimens at the interface between gutta-percha and dentin were observed under the SEM(x1000) and Stereomicroscope (LEICA M42O, Meyer Inst., TX U.S.A) at 1.25 x25 magnification. The results were statistically analysed by using a One-way ANOVA and Tukey's test. The results were as follows; 1. Tensile bond strengths($mean{\pm}SD$) were expressed with ascending order as follows: Group 1, $3.09{\pm}$ 1.05Mpa : Group 2, $6.23{\pm}1.16MPa$ : Group 3, $7.12{\pm}1.07MPa$ : Group 4, $10.32{\pm}2.06MPa$. 2. Tensile bond strengths of the group 2 and 4 used disks of gutta-percha for conventional obturation were significantly higher than that of the group 1 and 3 used fir thermoplastic obturation. (p < 0.05). 3. Tensile bond strengths of the group 3 and 4 treated with 2% NaOC1+17% EDTA were significantly higher than that of the group 1 and 2 treated with 2% NaOCl. (p < 0.05). 4. In analysis of failure patterns at the interface between sealer and gutta-percha, there were observed 49 (61%)cases of adhesive failure patterns and 31 (39%) cases of mixed failures patterns.

The Physical and Thermal Properties Analysis of the VOC Free Composites Comprised of Epoxy Resin, and Dicyandiamide (VOC Free Epoxy Resin/Dicyandiamide 경화물의 배합비 변화에 따른 물리적 특성 및 열적특성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young IL;Kim, Young Chul;Lim, Choong-Sun
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2015
  • Volatile organic compounds (VOC) free adhesives have been interested by many scientists and engineers due to environmental regulations and the safety of industrial workers. In this work, a series of composites composed with bisphenol A epoxy resin used as solvent, dicyandiamide, and promoter were prepared to investigate the most appropriate molar ratio for steel-steel adhesion. The cured test specimen of each composite were measured with universal testing machine (UTM) to figure out mechanical properties such as tensile strength, Young’s modulus, and elongation. Furthermore, the lap shear strength of the specimen was tested with UTM while impact resistance was measured with Izod impact tester. The composite whose molar ratio of epoxy resin to curing agent is 1 : 0.9 (sample 3), showed better tensile strength, coefficient of elastic modulus, elongation, and impact strength than other composites did. The highest tanδ from dynamic mechanical analysis (DMA) was observed from sample 2 (epoxy resin: dicy = 1 : 0.7) while sample 3 showed slightly lower tanδ than that of 2. The morphology of the fracture surface of the cured composites from SEM showed that the number of subtle lines on the surface caused by impact increase as the contents of amine curing agent accrete. Furthermore, the viscosity change of sample 5 (epoxy resin: dicy = 1 : 1.3) was observed to confirm its storage stability.