• 제목/요약/키워드: Adhesion Strength

검색결과 1,338건 처리시간 0.029초

수처리 시설물에 적용되는 섬유패널 배면부의 입체 성형 각도에 따른 부착 성능 연구 (A Study on the Adhesion Performance of Solid Forming Angle at Fiber Panel in the Water Supply Facility)

  • 윤준노;박완구;최수영;김동범;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.171-172
    • /
    • 2018
  • The purpose of this study is to confirm the adhesion performance of the three - dimensional forming fiber panels by the dimensional forming angle. As a result of applying the three dimensional surface shape to the back side of the fiber panel and testing the adhesion strength by the three dimensional forming angle, it was confirmed that the bonding strength of the specimens to which the dimensional molding was applied was higher than that of the non dimensional molding. In addition, the highest adhesion strength was confirmed in a specimen having a three-dimensional forming angle of 70 °.

  • PDF

플라즈마 화학증착법에 있어 모재의 표면조도가 TiN 박막층의 밀착력에 미치는 영향에 관하여 (Effect of Substrate Roughness on the Adhesion of TiN Deposition by PACVD)

  • 강해용;김문일
    • 열처리공학회지
    • /
    • 제4권2호
    • /
    • pp.27-37
    • /
    • 1991
  • The adhesion strength of TiN films to substrate(STC 3) steel has been studied using the scratch adhesion test. Before deposition, the substrates were mechanically polished and TiN films were deposited at different substrate temperature($480^{\circ}C-540^{\circ}C$). The chemical properties of TiN films were investigated by RBS, and EDS, and the physical properties were investigated by micro-hardness tester, SEM, and X-ray diffractometer. According to results of this study, the adhesion strength of TiN films increase with increasing the deposition temperature. The roughness of the polished substrates surface were measured with a profilometer. It was observed that, as a general rule, the adhesion strength of deposited TiN films increase with decreasing the substrates surface roughness.

  • PDF

Polyetherimide 접착제의 표면 처리에 따른 MCM-D 계면 접착력 및 고온고습 신뢰성 변화에 관한 연구 (A Study on the Effect of Polyetherimide Surface Treatment on the Adhesion and High Temperature/High Humidity Reliability of MCM-D Interface)

  • 윤현국;고형수;백경욱
    • 한국재료학회지
    • /
    • 제9권12호
    • /
    • pp.1176-1180
    • /
    • 1999
  • Polyetherimide와 실리콘 사이의 RIE 처리 및 알루미늄 킬레이트 계열의 adhesion promoter 처리에 따른 접착력과 고온고습환경에서의 신뢰성 변화를 연구하였다. 실험 방법으로는 180$^{\circ}$ 필 테스트 및 <85$^{\circ}C$ 85%> 테스트, SEM, AFM, 증류수 접촉각 실험이 수행되었다. $^O_2$ RIE 실험 결과 초기 접착력은 RIE 처리시간에 따라 약간의 변화를 가져왔으나 고온고습 환경에서의 저항성은 급격히 떨어지는 것이 관찰되었고 이것은 표면 거칠기의 영향이 아닌 표면의 친수성 정도에 따른 것으로 나타났다. Al-chelate adhesion promoter의 경우 초기 접착력에는 변화가 없으나 고온 고습환경에서의 저항성이 크게 증가하였는데 이것은 표면이 소수성으로 변한 데 따른 것으로 나타났다.

  • PDF

콘크리트 보수용 폴리머 복합재료의 기초적 성질 (Fundamental properties of polymer composite materials for concrete repair)

  • 지경용;연규석;이윤수;전철수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.319-322
    • /
    • 1999
  • The adhesion properties of polymer cement mortars for cement concrete repair were evaluated with respect to polymer-cement ratios and the surface conditions of cement concrete substrate. Styrene-butadiene rubber (SBR) was used as an additive for polymer cement mortars. The adhesion strength of cement mortar was smaller than that of polymer cement mortar. The adhesion strengths to the dry surfaces of substrate were larger than those to the wet surfaces, indicating that the dryness of substrate increased the adhesion strength in repairing concrete structures.

  • PDF

고주파용 유전체 세라믹 공진기의 표면처리 (Surface Treatment of Dielectric Ceramic Resonator for High Frequency Devices)

  • 박해덕;강성군
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.923-928
    • /
    • 2001
  • An electrolytic silver plating process has been successfully developed for terminated electrode parts of dielectric ceramic resonator. High adhesion strength and high Qu is obtained and blister occurance is minimized under plating condition with $HNO_3$750 $m\ell/\ell$ and HF $ 250m\ell/\ell$ solution at $25^{\circ}C$ for 20 minutes. Adhesion strength has the highest value, 3.2 kg/mm$^2$ at etching temperature of $25^{\circ}C$. Adhesion strength, Qu and blister occurance are monotonically increased with the thickness of electrodeposition layer. In case of electrodeposition of Ag, Qu value of 380 has obtained higher than in case of electrolytic Cu plating with Qu value of 325. Therefore, terminated electrode parts of dielectric ceramic resonator reducing dielectric loss can be obtained using prensent process.

  • PDF

Effects of Ultraviolet Surface Treatment on Adhesion Strength of Carbon/Epoxy Composite

  • Kim, Jong-Min;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.15-19
    • /
    • 2002
  • In this work, the surface modification of carbon/epoxy composites was investigated using UV (ultraviolet ray) surface treatment to increase adhesion strength between the carbon/epoxy composites and adhesives. After UV surface treatment, XPS (X-ray photoelectron spectroscopy) tests were performed to analyze the surface characteristics of the carbon/epoxy composites. Comparing adhesion strengths with the surface characteristics, the effects of the surface modification of carbon/epoxy composites by UV surface treatments on the adhesion strengths were investigated.

  • PDF

Tribolgical Characteristics of DLC Film using Substrates with Varying Hardness

  • Park, Jae-Hong;Jang, Beom-Taek;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.31-35
    • /
    • 2008
  • DLC (Diamond Like Carbon) films have predominant tribological properties like a high hardness, low friction and high chemical resistance; therefore, DLC films are applied in a wide range of industrial fields. This paper evaluated the characteristics of DLC films deposited on bearing steel with different hardness by RF-PECVD (Radio Frequency - Plasma Enhanced Chemical Vapor Deposition) method. Si-interlayer was deposited on bearing steel to improve adhesion strength by RF-Sputtering method. The DLC film structures were analyzed with Raman spectra and Gaussian function. Adhesion strength of DLC films was measured with a scratch tester. Friction and wear test were carried out with a ball-on -disc type to investigate the tribological characteristics. Experimental results showed that DLC films deposited on bearing steel under same deposition condition have typical structure DLC films regardless of hardness of bearing steel. Adhesion strength of DLC film is increased with a hardness of bearing steel. Friction coefficient of DLC film showed lower at the high hardness of bearing steel.

표면전처리가 반응성 스퍼터링법으로 제조한 TiN 코팅층의 밀착력에 미치는 영향 (The Effects of Surface Pretreatments on Adhesion Strength of TiN Films by DC Magnetron Sputtering)

  • 김흥윤;백운승;권식철;김규호
    • 한국표면공학회지
    • /
    • 제26권5호
    • /
    • pp.225-234
    • /
    • 1993
  • Titanium nitride coatings were deposited onto SUS304 stainless steel substrates pretreated by mechanical scrubbing, chemical etching at 50% HCl solution and Ar ion etching. Adhesion strength were measured by scratch tester and confirmed by SEM with EDS. Adhesion strength of Ar ion etched substrate was 10 to 15 times higher than that of mechanical scrubbed or chemical etched substrate. Ar ion etching brought about an uniform and fine spherical shaped surface, while chemical etching gave rise to a rough and irregular surface on SEM micrograph. It was suggested that higher adhesion strength might be caused by anchoring effect of Ar ion etched surface prior to TiN deposition.

  • PDF

고밀도 폴리에틸렌으로 접착한 합판의 접착성질과 해부학적 관찰 (Adhesion Characteristics and Anatomic Scanning of Plywood Bonded by High Density Polyethylene)

  • 한기선;이화형
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.16-23
    • /
    • 1997
  • This study was carried out to discuss feasibility of high density polyethylene(HDPE) as a new substitute for the conventional adhesives in plywood manufacture. Plywood was composed of radiata pine(Pinus radiata) and Malas(Homallium feotidium) veneers and bonded by HDPE. Adhesion characteristics and anatomical scanning has been examined through tensile-shear strength test and scanning electron microscopy(SEM). The results are as follows; 1. Optimum loading quantity was 15g/$(30.3{\times}30.3)cm^2$, and tensile-shear strength increased with the increase of loading quantity. 2. Even at the hot pressing time of 1 minute, tensile-shear strength met the value of KS(over the 7.5kgf/$cm^2$), and tensile-shear strength increased with the increase of hot pressing time. 3. Plywood composed of veneer at moisture content of 19.6% showed similar tensile-shear strength to that at air conditioned moisture content of 11.4%. 4. Under the same condition of hot pressing time, tensile-shear strength of plywood bonded by HDPE met the KS value of boil and wet test and proved the same group as phenol formaldehyde adhesive. 5. HDPE films showed mechanical adhesion through penetration into the lathe check and ray of veneer.

  • PDF

FRP 복합체의 콘크리트에 대한 접착강도 시험방법 변수 연구 (Parametric Study on Test Method for Pull-off Strength of FRP Composite Material used in Strengthening RC Members)

  • 최기선;유영찬;이한승;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.222-225
    • /
    • 2006
  • Pull-off test is widely used to evaluate bond performance between concrete and FRP composite. However, reliability of experiment result declines due to many difference between test methods of each national standards. This study analyzed problems of various existing test methods for pull-off test and suggested standardized test method. In addition, since tensile strength of concrete is smaller than bond strength of epoxy resin, maximum bond strength of epoxy resin shall be limited within tensile strength of concrete. Alternative testing method, therefore, which decrease FRP adhesion areas than concrete adhesion areas is suggested to widen test range of bond strength in pull-off test. In the experimental results, bond performance can be estimated up to two times of tensile strength of concrete by reducing FRP adhesion areas by 1/3.

  • PDF