• Title/Summary/Keyword: Adherend

Search Result 76, Processing Time 0.022 seconds

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra;A.K. Pradhan;M.K. Pandit ;S.K. Panda
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

Accelerated Degradation Test and Failure Analysis of Rapid Curing Epoxy Resin for Restoration of Cultural Heritage (문화재 복원용 속(速)경화형 Epoxy계 수지의 가속열화시험 및 고장분석 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.467-483
    • /
    • 2017
  • In this study, the degradation properties by temperature stress of $Araldite^{(R)}$ rapid-curing epoxy resin used for inorganic cultural heritages, was identified. The tensile and tensile shear strength of durability decreased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$. In terms of stability of external stress and temperature, the slow-curing epoxy was superior to the rapid-curing epoxy, and cultural heritage conservation plans should therefore consider the strength and stress properties of restoration materials. Color differences increased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$, and glossiness decreased. Both color and gloss stability were weak, which necessitates the improvement of optical properties. Thermal properties (weight loss, decomposition temperature, and glass transition temperature) of adhesives are linked to mechanical properties. Interfacial properties of the adherend and water vapor transmission rates of adhesives are linked to performance variation. For porous media (ceramics, brick, and stone), isothermal and isohumid environments are important. For outdoor artifacts on display in museums, changes in physical properties by exposure to varying environmental conditions need to be minimized. These results can be used as baseline data in the study of the degradation velocity and lifetime prediction of rapid-curing epoxy resin for the restoration of cultural heritages.

A Study on the Degradation Properties of DGEBA/TETA Epoxy System for Restoration of Ceramics by Temperature (도자기 복원용 DGEBA/TETA Epoxy계 수지의 온도에 의한 열화 특성 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.373-386
    • /
    • 2015
  • This study identified degradation properties by temperature stress with Araldite$^{(R)}$ AY103-1/HY956 used for ceramics. Tensile and compressive strength of durability increased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$. In stability of external stress and temperature, compressive strength is superior to tensile strength, it requires conservation plans considering strength properties and stress of restoration materials. The tensile shear strength of adhesion properties decreased for 4,320 hours at temperature of $40{\sim}60^{\circ}C$. In ceramics with porosity, environments under isothermal-isohumidity are important because interfacial properties of adherend are concerned with performance variation. Glossiness decreased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$ and color difference increased. Gloss stability was superior and color stability was weak, which requires improvement of optical properties. In artifacts on display in museums, there is concern about temperature rise on restoration materials by lighting therefore, it needs to minimize change in physical properties by exposure environments.

Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

  • Minesaki, Yoshito;Murahara, Sadaaki;Kajihara, Yutaro;Takenouchi, Yoshihisa;Tanaka, Takuo;Suzuki, Shiro;Minami, Hiroyuki
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS. Disk-shaped specimens ($2.5{\times}10.0mm$) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using $110{\mu}m$ alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (${\alpha}=.05$). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS. There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION. Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys.

A Study on the Fatigue Strength of the 3-D Reinforced Composite Joints (3-차원 보강 복합재 체결부의 피로강도 특성 연구)

  • Kim, Ji-Wan;An, Woo-Jin;Seo, Kyeong-Ho;Choi, Jin-Ho
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.322-327
    • /
    • 2022
  • Composite lap joints have been extensively used due to their excellent properties and the demand for light structures. However, due to the weak mechanical properties in the thickness direction, the lap joint is easily fractured. various reinforcement methods that delay fracture by dispersing stress concentration have been applied to overcome this problem, such as z-pinning and conventional stitching. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. I-fiber stitching method is a promising technology that combines the advantages of both z-pinning and the conventional stitching. In this paper, the static and fatigue strengths of the single-lap joints reinforced by the I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process and I-fiber reinforcing effects were evaluated according to adherend thickness and stitching angle. From the experiments, the thinner the composite joint specimen, the higher the I-fiber reinforcement effect, and Ifiber stitched single lap joints showed a 52% improvement in failure strength and 118% improvement in fatigue strength.