• Title/Summary/Keyword: Adenosine $A_1$-receptor

Search Result 173, Processing Time 0.026 seconds

The Study on Anti-obesity Effects of Mulberry Leaves Contained Herbal Mixture (상엽(桑葉) 함유 한약복합제 추출물의 항비만(抗肥滿)효과 연구)

  • Park, Jong Ik;Kang, Kyung Ha;Park, Eun Jung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.17-30
    • /
    • 2013
  • Objectives This experimental study was designed to investigate the effects of Mulberry leaves contained herbal mixture (MLHM) on body weight, serum lipid level and adipocyte differentiation in high fat diet-fed obese mice. Methods Four-week old mice (wild-type C57/BL6) were used for all experiments. Cells were incubated with MLHM at the indicated concentration (0.04-4mg/ml) for 24h, and growth rate was assessed by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 3T3-L1 preadipocytes were incubated in DMEM for 2 days with the indicated concentrations of MLHM, and on Day 6, the cells were fixed and the cellular lipid contents were assessed by Oil-Red-O staining. The expression of peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$) as adipocyte-specific proteins were determined by real time RT-PCR and western blotting. In addition, body weight gain and serum lipid levels were measured in the mice with obesity induced by the high fat-diet for four weeks. Results Though MLHM did not show toxicity even at the concentration of 4mg/ml, MLHM significantly inhibited the differentiation of 3T3-L1 preadipocites in a dose-dependent manner. Also, MLHM significantly reduced the expressions of PPAR ${\gamma}$ and C/EBP ${\alpha}$ in a dose-dependent manner. Furthermore, MLHM significantly reduced body weight gain and LDL-cholesterol contents in high fat diet-fed obese mice. Conclusions These results demonstrate that MLHM exerts anti-obesity effect in 3T3-L1 cells and mice with obesity by high-fat diet.

Constitutive Activating Eel Luteinizing Hormone Receptors Induce Constitutively Signal Transduction and Inactivating Mutants Impair Biological Activity

  • Byambaragchaa, Munkhzaya;Choi, Seung-Hee;Kim, Dong-Wan;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.3
    • /
    • pp.133-143
    • /
    • 2021
  • In contrast to the human lutropin receptor (hLHR) and rat LHR (rLHR), very few naturally occurring mutants in other mammalian species have been identified. The present study aimed to delineate the mechanism of signal transduction by three constitutively activating mutants (designated M410T, L469R, and D590Y) and two inactivating mutants (D383N and Y546F) of the eel LHR, known to be naturally occurring in human LHR transmembrane domains. The mutants were constructed and measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO)-K1 cells. The activating mutant cells expressing eel LHR-M410T, L469R, and D590Y exhibited a 4.0-, 19.1-, and 7.8-fold increase in basal cAMP response without agonist treatment, respectively. However, inactivating mutant cells expressing D417N and Y558F did not completely impaired signal transduction. Specifically, signal transduction in the cells expressing activating mutant L469R was not occurred with a further ligand stimulation, showing that the maximal response exhibited approximately 53% of those of wild type receptor. Our results suggested that the constitutively activating mutants of the eel LHR consistently occurred without agonist treatment. These results provide important information of LHR function in fish and regulation with regard to mutations of highly conserved amino acids in glycoprotein hormone receptors.

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.

Effects of ATP on Regulatory Volume Decrease in Mouse Cholangiocytes (ATP가 마우스 담관세포의 세포크기 조절에 미치는 영향)

  • Park, Jae Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.153-157
    • /
    • 2016
  • Although the adenosine triphosphate (ATP) efflux pathway is thought to play a major regulatory role in RVD in some cells, including cholangiocarcinoma cells, the role of ATP in regulatory volume decrease (RVD) of normal cholangiocytes is not well defined. Thus, this study was conducted to investigate the role of extra cellular ATP and ATP pathways of BDCCs isolated from normal mice. Changes in cell volume of BDCCs were indirectly assessed by measurement of the cross-sectional area (CSA) by quantitative videomicroscopy. The relative CSA of BDCCs from normal mice increased with hypotonic maneuver to $1.20{\pm}0.02$ (n=20) within 10 min, but decreased to $1.06{\pm}0.03$ at 40 min. Administration of ATP, ATP hydrolase apyrase or the P2 receptor blocker suramin during RVD had no significant effects compared with untreated controls. In addition, treatment with the PKC inhibitors, Bisindolamide I and Ro 31-8220, during RVD had no significant effects when compared with untreated controls. These results indicate that unlike the results from cholangiocarcinoma cells, ATP plays no significant role in the RVD of normal mouse cholangiocytes.

Regulation of histamine H2-receptor mediated Mg2+ release by phosphodiesterase inhibitors in the guinea pig hearts (기니픽 심장에서 histamine H2-수용체 자극에 의한 Mg2+ 유리에 대한 phosphodiesterase 억제제의 효과)

  • Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.479-487
    • /
    • 2000
  • Several recent studies demonstrate that receptor-mediated cAMP (adenosine 3',5'-monophosphate) production evokes marked change in magnesium ($Mg^{2+}$) homeostasis. The effects of dimaprit or/and phosphodiesterase (PDE) inhibitors on the $Mg^{2+}$ release from perfused guinea pig heart and collagenase-dispersed myocytes was studied to clarify an association of $H_2-histaminergic$ receptor-mediated $Mg^{2+}$ regulation with intracellular cAMP-degradation system. $Mg^{2+}$ efflux was stimulated in perfused hearts and myocytes by IBMX (3-isobutyl-1-methylxanthine), a calmodulin-sensitive PDE inhibitor, but not by RO 20-1724(4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone) or papaverine, cAMP-specific PDE inhibitors. $Mg^{2+}$ efflux was also be induced by dimaprit, a H-2-agonist. $Mg^{2+}$ effluxes induced by dimaprit were augmented by the presence of the PDE inhibitors. The augmentation of dimaprit-induced $Mg^{2+}$ effluxes by the PDE inhibitors were inhibited by ranitidine, a $H_2-antagonist$, and imipramine, a $Na^{+}-Mg^{2+}$ exchange inhibitor, in perfused hearts and myocytes and were also inhibited by amiloride in perfused hearts. These results suggest that the $H_2$-stimulated $Mg^{2+}$ effluxes from guinea pig heart can be regulated by the cytosolic nonspecific-dependent PDE systems and that it is induced by the $Na^{+}-Mg^{2+}$ exchanger stimulation.

  • PDF

YH18968, a Novel 1,2,4-Triazolone G-Protein Coupled Receptor 119 Agonist for the Treatment of Type 2 Diabetes Mellitus

  • Han, Taedong;Lee, Byoung Moon;Park, Yoo Hoi;Lee, Dong Hoon;Choi, Hyun Ho;Lee, Taehoon;Kim, Hakwon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • G protein-coupled receptor 119 (GPR119) is expressed in the pancreas and gastrointestinal tract, and its activation promotes insulin secretion in the beta cells of the pancreatic islets as well as the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells, consequently improving glucose-stimulated insulin secretion. Due to this dual mechanism of action, the development of small-molecule GPR119 agonists has received significant interest for the treatment of type 2 diabetes. We newly synthesized 1,2,4-triazolone derivatives of GPR119 agonists, which demonstrated excellent outcomes in a cyclic adenosine monophosphate (cAMP) assay. Among the synthesized derivatives, YH18968 showed cAMP=2.8 nM; in GLUTag cell, GLP-1secretion=2.3 fold; in the HIT-T15 cell, and insulin secretion=1.9 fold. Single oral administration of YH18968 improved glucose tolerance and combined treatment with a dipeptidyl peptidase 4 (DPP-4) inhibitor augmented the glucose lowering effect as well as the plasma level of active GLP-1 in normal mice. Single oral administration of YH18968 improved glucose tolerance in a diet induced obese mice model. This effect was maintained after repeated dosing for 4 weeks. The results indicate that YH18968 combined with a DPP-4 inhibitor may be an effective therapeutic candidate for the treatment of type 2 diabetes.

Effects of Capsaicin on Adipogenic Differentiation in Bovine Bone Marrow Mesenchymal Stem Cell

  • Jeong, Jin Young;Suresh, Sekar;Park, Mi Na;Jang, Mi;Park, Sungkwon;Gobianand, Kuppannan;You, Seungkwon;Yeon, Sung-Heom;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1783-1793
    • /
    • 2014
  • Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and $10{\mu}M$) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.

Effects of Potential Melanocortin-1 Receptor Antagonists on Cultured Normal Human Melanocytes (Melanocortin-1 수용체 길항제의 배양된 인간 멜라노사이트에 대한 효과)

  • Lee, Sanghwa;Chang, Yun-Hee;Lee, Seol-Hoon;Lee, Jeung Hoon
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • We have developed 8 peptide derivatives as potential MC1R antagonists and their inhibitory effects on ${\alpha}$-MSH induced cell growth in cultured normal human melanocytes (NHM) were investigated. From these experiments, the two most potent peptide derivatives, 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_6NH_2$ (P 6) and 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_9NH_2$ (P 7) were selected for further studies. In ${\alpha}$-MSH depleted NHM cells, we have found that the treatment with 1 ${\mu}M$ of these two peptide derivatives, P 6 and P 7, inhibited the cell proliferation induced by the addition of 1 nM ${\alpha}$- MSH by 70% and 72%, respectively. In NHM cells without previous ${\alpha}$-MSH depletion, 1 ${\mu}M$ treatment in the presence of 10 nM ${\alpha}$-MSH resulted in 70% (P 6) and 80% (P 7) decrease in cell growth and 64% (P 6) and 71% (P 7) reduction in melanin synthesis, respectively. The peptide derivatives P 6 and P 7 were proved to have no apparent cytotoxicity and inhibited the elevation of intracellular cAMP concentration triggered by ${\alpha}$-MSH. In conclusion, our data suggest that the peptide derivatives reported in this study, 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_6NH_2$ (P 6) and 5-phenylvaleric acid-(D)His- Arg-Trp-$(Lys)_9NH_2$ (P 7) strongly antagonize ${\alpha}$-MSH, inhibit cell proliferation and melanin synthesis, and lower the intracellular cAMP concentration, hence have a promising potential as a novel skin lightening agent.

Purinergic Receptors Play Roles in Secretion of Rat von Ebner Salivary Gland

  • Kim, Sang-Hee;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.141-148
    • /
    • 2006
  • The effects of adenosine triphosphate(ATP) on salivary glands have been recognized since 1982. The presence of purinergic recepetors(P2Rs) that mediate the effects of ATP in various tissues, including parotid and submandibular salivary gland, has been supported by the cloning of receptor cDNAs and the expression of the receptor proteins. P2Rs have many subtypes, and the activation of these receptor subtypes increase intracellular $Ca^{2+}$, a key ion in the regulation of the secretion in the salivary gland. The apical pores of taste buds in circumvallate and foliate papillae are surrounded by the saliva from von Ebner salivary gland(vEG). Thus, it is important how the secretion of vEG is controlled. This study was designed to elucidate the roles of P2Rs on salivary secretion of vEG. Male Sprague-Dawley rats (about 200 g) were used for this experiment. vEG-rich tissues were obtained from dissecting $500-1,000\;{\mu}m$ thick posterior tongue slices under stereomicroscope view. P2Rs mRNA in vEG acinar cells were identified with RT-PCR. To observe the change in intracellular $Ca^{2+}$ activity, we employed $Ca^{2+}-ion$ specific fluorescence analysis with fura-2. Single acinar cells and cell clusters were isolated by a sequential trypsin/collagenase treatment and were loaded with $10\;{\mu}M$ fura -2 AM for 60 minutes at room temperature. Several agonists and antagonists were used to test a receptor specificity. RT-PCR revealed that the mRNAs of $P2X_4$, $P2Y_1$, $P2Y_2$ and $P2Y_3$ are expressed in vEG acinar cells. The intracellular calcium activity was increased in response to $10\;{\mu}M$ ATP, a P2Rs agonist, and 2-MeSATP, a $P2Y_1$ and $P2Y_2R$ agonist. However, $300\;{\mu}M\;{\alpha}{\beta}-MeATP$, a $P2X_1$ and $P2X_3R$ agonist, did not elicit the response. The responses elicited by $10\;{\mu}M$ ATP and UTP, a $P2Y_2R$ agonists, were maintained when extracellular calcium was removed. $10\;{\mu}M$ suramin, a P2XR antagonist, and reactive blue 2, a P2YR antagonist, partially blocked ATP-induced response. However, when extracellular calciums were removed, suramin did not abolish the responses elicited by ATP. These results suggest that P2Rs play an important role in salivary secretion of vEG acinar cells and the effects of ATP on vEG salivary secretion may be mediated by $P2X_4$, $P2Y_1$, $P2Y_2$, and/or $P2Y_3$.

Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide (모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구)

  • Kim Hyun Hee;Rho Sam Woong;Na Youn Gin;Bae Hyun Su;Shin Min Kyu;Kim Chung Suk;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.