• 제목/요약/키워드: Additive Noise

검색결과 626건 처리시간 0.03초

딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거 (De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning)

  • 선영규;황유민;심이삭;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.55-60
    • /
    • 2018
  • 본 논문은 전력선 통신에서 딥 러닝 기술 적용시킨 연구의 초기 결과를 보여준다. 본 논문에서는 전력선 통신의 성능을 감소시키는 원인인 잡음을 제거하기 위해 딥 러닝 기술을 적용시켜 효과적인 잡음 제거를 목표로 하고 수신 단에서 딥 러닝 모델을 추가하여 잡음을 효과적으로 제거하는 시스템을 제안한다. 딥 러닝 모델을 학습시키기 위해서는 데이터가 필요하므로 기존의 데이터들을 저장하고 있다고 가정하고 제안하는 시스템에 대해 시뮬레이션을 진행하여 부가 백색 가우시안 잡음 채널의 이론적 결과와 비트 에러률을 비교하여 제안하는 시스템 모델이 잡음을 제거하여 통신 성능을 향상시킨 것을 확인한다.

AWGN 제거를 위한 표준편차 기반의 거리가중치 필터 (Distance Weighted Filter based on Standard Deviation Distribution for AWGN Removal)

  • 박화정;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.118-120
    • /
    • 2021
  • 현대 사회는 IoT 기술의 발달에 따라 CCTV, 탐사로봇 등 폭넓은 분야에서 다양한 디지털 장비들이 보급되고 있다. 이에 데이터처리의 중요성이 커지고 있으며, 영상 분야에서도 데이터를 수신하는 과정에서 발생하는 잡음을 제거하기 위한 다양한 연구들이 진행되고 있다. 대표적인 잡음으로 AWGN(additive white Gaussian noise)이 있으며, 잡음을 제거하기 위한 기존의 필터로는 평균필터(AF : average filter), 알파 트림드 평균필터(A-TAF : alpha trimmed average filter), 메디안필터(MF : median filter) 등이 있다. 하지만 기존의 필터들은 고주파영역에서의 잡음 제거 특성이 다소 미흡한 성능을 보이는 단점이 있다. 따라서 본 논문에서는 고주파영역에 존재하는 AWGN을 효과적으로 제거하기 위해 표준편차를 기반한 거리에 따른 가중치필터를 제안한다.

  • PDF

디테일 디스크립터를 이용한 이미지 영역 분석과 개선에 관한 연구 (A study on image region analysis and image enhancement using detail descriptor)

  • 임재성;정영탁;이지혁
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.728-735
    • /
    • 2017
  • 디지털 디바이스가 범용적으로 보급되면서, 영상을 획득하는 과정에서 다량의 부가적 백색 잡음 노이즈(additive white Gaussian noise, AWGN)가 발생하고 있다. 대부분 알려져 있는 대표적인 디노이징 기법들은 노이즈를 제거하는 것에 초점을 맞추고 있어, 영상정보를 포함하는 디테일 성분들이 노이즈를 제거가 되는 과정에서 비례적으로 없어지게 된다. 그러므로, 제안하는 알고리즘은 영상 디테일을 보존하면서 효과적으로 노이즈를 제거하는 방법을 제시하고자 한다. 제안하는 방법에서는, 노이즈의 랜덤성을 이용하여 엣지 강도 및 엣지 연결성을 이용하여 의미 있는 디테일 성분을 분리하는 것을 목적으로 한다. 결과적으로, 노이즈 수준이 높아져도, 제안하는 방법은 연결된 디테일성분을 효과적으로 추출하기 때문에 타 벤치마크 방법에 비해 나은 디노이징 결과를 보여준다. 또한, 실험결과에서 보듯이, 제안하는 방법은 다양한 노이즈 수준에서도 타 벤치마크 방법들에 비교하여 제안하는 방법은 SSIM(structural similarity index), PSNR(peak signal-to-noise ratio)측면에서 각각 우수한 수치를 보여주었다. 높은 수치의 SSIM의 결과로 알 수 있듯이, 결과 영상들이 인간의 시각인지체계(human visual system, HVS)를 반영하고 있는 것을 확증해 주고 있다.

에지정보를 고려한 복합잡음 제거를 위한 영상복원에 관한 연구 (A Study on Image Restoration for Removing Mixed Noise while Considering Edge Information)

  • ;김남호
    • 한국정보통신학회논문지
    • /
    • 제15권10호
    • /
    • pp.2239-2246
    • /
    • 2011
  • 영상신호를 처리하는 과정에서 잡음에 의해 영상의 열화가 발생하고 있으며, 가우시안 잡음과 임펄스 잡음이 중첩되어 생성된 복합잡음에 의해 훼손되는 경우가 많다. 따라서 본 논문에서는 에지정보를 고려하며 임펄스 잡음과 AWGN(additive white gaussian noise) 잡음이 중첩된 복합잡음을 제거하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 잡음의 종류를 판단과정을 거친 후, 그 결과가 AWGN이라고 하면 self-adaptive weighted mean 필터를 사용하여 구하여진 값과 마스크 내의 중간값 사이의 평균을 출력으로 한다. 만약 임펄스 잡음이라고 판단 될 경우, 변형된 비선형 필터를 이용하여 처리한다. 그리고 시뮬레이션을 통해 기존의 방법들과 그 성능을 비교하였고 판단 기준으로 PSNR(peak signal to noise ratio)을 사용하였다. 테스트 영상들에 대한 시뮬레이션 결과로부터 제안한 방법은 기존의 방법들보다 잡음제거나 에지보존 등 방면에서 우수한 성능을 나타내었다.

A study on image area analysis and improvement using denoising technique

  • Moon, Yu-Sung;Kim, Jung-Won
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.544-547
    • /
    • 2021
  • Recently, various display products are being applied to automobiles. In the process of acquiring an image from a display product, a large amount of additive white Gaussian noise(AWGN) is generated. Generally known denoising techniques focus on removing noise, so detailed components including image information are proportionally lost in the process of removing noise. The algorithm proposed in this paper proposes a method to effectively remove noise while preserving the detail of image information.

음성신호의 단일입력 적응잡음제거 (A Single Channel Adaptive Noise Cancellation for Speech Signals)

  • 강해동;배건성
    • 한국음향학회지
    • /
    • 제13권3호
    • /
    • pp.16-24
    • /
    • 1994
  • 음성신호에 내재한 배경잡음을 제거하는 단일입력 적응잡음제거 시스템을 구성하였다. 기존 방법에서는 프레임 단위로 분석된 음성신호의 피치 정보를 이용하여 적응여파기의 기준신호를 얻는데 비해 제안된 방법에서는 매 샘플마다 지연 정보를 추정하여 기준신호를 만든다. 입력되는 음성신호로부터 매 샘플시간마다 지연 정보를 구하기 위하여 일반적인 자기상관 함수와 평균절대차 함수로부터 재귀적 자기상관함수와 재귀적 평균절대차함수를 유도하였다. 정규화된 최소평균자승(NLMS) 적응알고리듬을 사용하는 단일입력 잡음제거 시스템에 제안된 지연추정 방법을 적용하여 백색 가우시안 잡음에 왜곡된 음성에 대해 음성개선 실험을 하였으며, 기존 방법과의 성능비교 실험을 하였다. 제안된 방법에 의한 음성개선이 기존 방법보다 음질 및 SNR면에서 더 좋은 결과를 보였다.

  • PDF

클러스터링 및 영상 분할을 위한 커널 기반의 Possibilistic 접근 방법 (A Kernel based Possibilistic Approach for Clustering and Image Segmentation)

  • 최길수;최병인;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.889-894
    • /
    • 2004
  • Fuzzy Kernel C-Means(FKCM) 알고리즘은 커널 함수를 통하여 구형의 데이터뿐만 아니라 Fuzzy C-Means(FCM)에서는 분류하기 힘든 복잡한 형태의 분포를 갖는 데이터를 분류할 수 있다. 하지만 FCM과 같이 노이즈에 대해서는 민감한 성질을 가진다. 이처럼 노이즈(noise)에 민감한 성질을 보완하기 위해서 본 논문에서는 Possibilistic C-Means 알고리즘에 커널 함수를 적용하였다. 제안한 Kernel Possibilistic C-Means(KPCM) 알고리즘은 일반적인 데이터에 대해 FKCM과 같은 성능의 클러스터링 수행이 가능하며 노이즈가 있는 데이터에 대해서는 FKCM보다 정확한 클러스터링을 수행할 수 있다.

AWGN환경에서 에지보호를 위한 개선된 잡음제거 알고리즘에 관한 연구 (A Study on Improved Denoising Algorithm for Edge Preservation in AWGN Environments)

  • ;김남호
    • 한국정보통신학회논문지
    • /
    • 제16권8호
    • /
    • pp.1773-1778
    • /
    • 2012
  • 최근 들어, 디지털 영상처리 장치에 대한 수요가 급격히 증대되면서 영상의 우수한 화질이 요구되고 있다. 그러나 여러 가지 원인에 의해 잡음이 추가되어 영상을 훼손시킨다. 따라서 잡음제거에 대한 필요성이 대두되고 있으며, 잡음제거 기술은 주요한 연구 분야가 되었다. 영상은 AWGN(additive white Gaussian noise)에 의해 많이 훼손되며, 본 논문에서는 AWGN을 제거하기 위해, 에지보호를 위한 개선된 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 공간거리 차이 정보를 고려한 가중치 필터와 적응 가중치 필터로 처리한 결과값의 평균과 마스크내의 분산과 추정된 잡음분산의 관계식에 의해 처리된 값을 합하여, 영상의 최종출력값을 구한다. 따라서 제안한 방법은 우수한 잡음제거 및 에지보존 특성을 나타내었고 영상의 화질을 개선하였다.

AWGN 환경에서 표준편차를 이용한 필터 알고리즘 (A Filter Algorithm using Standard Deviation in AWGN Environment)

  • 권세익;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.936-939
    • /
    • 2015
  • 현재, 영상처리는 다양한 분야에서 활용되고 있으며, 영상을 전송, 처리, 저장하는 과정에서 발생하는 잡음을 제거하기 위해, 영상복원에 관한 많은 연구가 진행되고 있다. 영상에 첨가되는 잡음은 발생원인과 형태에 따라 다양한 종류가 있으며, AWGN(additive white Gaussian noise)이 대표적이다. 본 논문에서는 영상에 첨가된 AWGN을 완화하기 위해, 표준편차에 따라 필터의 가중치를 다르게 적용하는 알고리즘을 제안하였다. 그리고 객관적 판단을 위해 기존의 방법들과 비교하였으며, 판단의 기준으로 PSNR(peak signal to noise ratio)을 사용하였다.

  • PDF

Evaluation of Robust Classifier Algorithm for Tissue Classification under Various Noise Levels

  • Youn, Su Hyun;Shin, Ki Young;Choi, Ahnryul;Mun, Joung Hwan
    • ETRI Journal
    • /
    • 제39권1호
    • /
    • pp.87-96
    • /
    • 2017
  • Ultrasonic surgical devices are routinely used for surgical procedures. The incision and coagulation of tissue generate a temperature of $40^{\circ}C-150^{\circ}C$ and depend on the controllable output power level of the surgical device. Recently, research on the classification of grasped tissues to automatically control the power level was published. However, this research did not consider the specific characteristics of the surgical device, tissue denaturalization, and so on. Therefore, this research proposes a robust algorithm that simulates noise to resemble real situations and classifies tissue using conventional classifier algorithms. In this research, the bioimpedance spectrum for six tissues (liver, large intestine, kidney, lung, muscle, and fat) is measured, and five classifier algorithms are used. A signal-to-noise ratio of additive white Gaussian noise diversifies the testing sets, and as a result, each classifier's performance exhibits a difference. The k-nearest neighbors algorithm shows the highest classification rate of 92.09% (p < 0.01) and a standard deviation of 1.92%, which confirms high reproducibility.