• 제목/요약/키워드: Additive Layer

검색결과 276건 처리시간 0.032초

Mechanical Properties and Microstructure of Nano Grain Nickel Alloy Deposit

  • Seo, Moo Hong;Kim, Jung Su;Kim, Seung Ho;Wyi, Jung Il;Hwang, Woon Suk;Jang, Si Sung;Jung, Hyun Kyu;Chun, Byung Sun
    • Corrosion Science and Technology
    • /
    • 제2권4호
    • /
    • pp.197-201
    • /
    • 2003
  • In this study, Ni-P layers were electroplated on the surface of stainless steel in order to investigate the effects of an additive and agitation on their mechanical properties and microstructure. The concentration of the additive in the plating solution increased, the pores formed in the layer decreased, while the residual stress developed in the layers during electroplating increased. Agitation of the solution during electroplating was observed to force to increase local pores in the layer, which lowers its tensile properties. Grain growth was suppressed due to very fine $Ni_3P$ precipitates formed at its grain boundaries during heat treatment at $343^{\circ}C$ for 1 hr in air.

In situ monitoring-based feature extraction for metal additive manufacturing products warpage prediction

  • Lee, Jungeon;Baek, Adrian M. Chung;Kim, Namhun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.767-775
    • /
    • 2022
  • Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, produces 3D metal products by repeatedly adding and solidifying metal materials layer by layer. During the metal AM process, products experience repeated local melting and cooling using a laser or electron beam, resulting in product defects, such as warpage, cracks, and internal pores. Such defects adversely affect the final product. This paper proposes the in situ monitoring-based warpage prediction of metal AM products with experimental feature extraction. The temperature profile of the metal AM substrate during the process was experimentally collected. Time-domain features were extracted from the temperature profile, and their relationships to the warpage mechanism were investigated. The standard deviation showed a significant linear correlation with warpage. The findings from this study are expected to contribute to optimizing process parameters for metal AM warpage reduction.

센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구 (Additive Manufacturing for Sensor Integrated Components)

  • 정임두;이민식;우영진;김경태;유지훈
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

Triallyl Borate as an Effective Separator/Cathode Interphase Modifier for Lithium-ion Batteries

  • Ha Neul Kim;Hye Rim Lee;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.272-282
    • /
    • 2023
  • Ni-rich layered oxides cathode has recently gained attention as an advanced cathode material due to their applicable energy density. However, as the Ni component in the layered site is increased, the high reactivity of Ni4+ results in parasitic reaction associated with decomposing electrolyte, which leads to a rapid decreasing the lifespan of the cell. The electrolyte additive triallyl borate (TAB) improves interfacial stability, leading to a stable cathode-electrolyte interphase (CEI) layer on the LNCM83 cathode. A multi-functionalized TAB additive can produce a uniformly distributed CEI layer via electrochemical oxidation, which implies an increase in long-term cycling performance. After 100 cycles at elevated temperature, the cell tested by 0.75 TAB retained 88.3% of its retention ratio, whereas the cell performed by TAB-free electrolyte retained 64.1% of its retention. Once the TAB additive formed CEI layers on the LNCM83 cathode, it inhibited the decomposition of carbonate-based solvents species in addition to the dissolution of transition metal components from the cathode. The addition of TAB to LNCM83 cathode material is believed to be a promising way to increase the electrochemical performance.

Micro-Structural Enhancement of XLPE Insulation Using Additive Diffusion Method

  • Park, Se-Eun;Shim, Sung-Ik;Cho, Dae-Hee;Youn, Bok-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.238-239
    • /
    • 2005
  • With the aim of developing XLPE insulation for extra high voltage cable, we investigated the morphology of cross-linked polyethylene. We used a kind of base materials and additives, and controlled curing condition and amount of additives. The effect of addition of additives on morphology of XLPE such as lamellar density, orientation and additive layer were analyzed using TEM analysis. We applied this result to diffused additive amount was analyzed using FT-IR analysis, and the change of microstructure as the degree of additive diffusion was analyzed using TEM analysis.

  • PDF

사형 주조에서 바인더 젯 3D 프린터를 이용한 기계적 물성 향상을 위한 공정 연구 (A Study on the Process for Improving Mechanical Property of Sand Casting by Using the Binder Jetting Method)

  • 황정철;김태성
    • 대한안전경영과학회지
    • /
    • 제25권1호
    • /
    • pp.23-29
    • /
    • 2023
  • Among the Additive Manufacturing (AM) technologies, the Binder-Jetting printing technology is a method of spraying an adhesive on the surface of powder and laminate layer by layer. Recently, this technique has become a major issue in the production of large casting products such as ship-building, custom vehicles and so on. In this study, we performed research to make actual mold castings and increase mechanical property by using special sand and water-based binders. For use as a mold, it has a strength of more than 3MPa and permeability. Various experiments were carried out to obtain suitable them. The major process parameters were binder jetting volume, binder types, layer thickness and heat treatment condition. As a result of this study, the binder drop quantity was measured to be about 60 pico-liter, layer thickness was 100㎛ and the heat treatment condition was measured about 1,000℃ and compressive strength were measured to be more than 5MPa. The optimum condition of this experiment was established through actual casting of aluminum. The equipment used in this study was a Freeforms T400 model (SFS Co., Ltd.), and the printing area of 420 * 300 * 250mm and resolution of 600dpi can be realized.

액상첨가제에 의한 칼라로도 블록 무기 안료층의 특성 향상 (Enhancement in the physical properties of inorganic pigment layer in the color block by incorporation of n liquid additive)

  • 이동명;박동욱;이준희;김상민;김대영;김정조;김진곤;조현
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.222-226
    • /
    • 2006
  • Carboxylated styrene-butadiene계 액상 첨가제가 칼라 보도 블록 무기 안료층의 미세구조, 기계적 특성 및 탈색 저항성에 미치는 영향에 대하여 조사하였다. 액상 첨가제를 첨가함에 따라 겉보기 기공률과 흡수율이 감소한 더 치밀한 미세구조와 균일한 안료 분포를 나타내는 무기 안료층을 얻을 수 있었다. 또한 기계적 강도 및 탈색저항성이 현저히 향상됨을 확인하였다.

적층조형 폴리머 재료의 기계적 물성 연구 (A Study on the Mechanical Properties of Additive Manufactured Polymer Materials)

  • 김동범;이인환;조해용
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.773-780
    • /
    • 2015
  • 적층조형(additive manufacturing, AM)은 액체, 고체 상태인 폴리머, 금속 등의 재료를 층층이 쌓아서 3 차원 형상을 제조하는 기술이다. AM 기술은 제품 개발 초기단계에서 시제품 제작에 주로 사용되었으나, 최근 들어 이를 실제 제품제작에 적용하는 것에 대한 관심이 높아지고 있다. 한편 AM 기술에서 적층방향은 최종성형품의 기계적 물성에 영향을 줄 수 있다. 따라서 본 연구에서는 폴리머 재료를 사용하는 대표적인 AM 기술인 FDM, PolyJet 그리고 SLA 방식으로 제작되는 재료의 기계적 물성을 실험을 통해 파악하여 보았다. 이때 시험편의 형상은 ASTM D 638 을 참고하였고 적층방향을 달리하여 성형하였다. 시험편의 인장시험으로부터 얻은 응력-변형률 선도를 바탕으로 기계적 물성을 조사하였다. 또한 시험편의 파단부를 SEM 촬영하여 물성차이의 결과를 분석하였다.

Viewing Angle Controllable LCD by Thermal Modulation of Optical Layer

  • Han, In-Young;Gwag, Jin-Seog;Lee, You-Jin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.348-351
    • /
    • 2008
  • We suggest a viewing angle control mode of liquid crystal display(LCD) with additive thermal controllable optical layer [TCOL], which composed of homeotropically or homogenously well aligned LC layer and patterned hating lines on a substrate. In this system, LCD modes with wide viewing angle characteristics can be used as a main panel.

  • PDF