• Title/Summary/Keyword: Additive Algorithm

Search Result 306, Processing Time 0.023 seconds

A Study on the Modified Mean Filter Algorithm for Removal AWGN (AWGN 제거를 위한 변형된 평균 필터 알고리즘에 관한 연구)

  • Long, Xu;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.792-794
    • /
    • 2014
  • In the modern society where the communication technology has rapidly developed, image devices such as digital display, camera, etc., forms the center. However, during the transmission of image data, storing, and obtaining, a noise is added to the image due to various reasons and degrades the quality of the image. In this paper, an average filter algorithm modified in order to ease the effect of AWGN(additive white Gaussian noise) being added to the image was proposed. Also compare existing methods through the using PSNR.

  • PDF

Defect Classification of Cross-section of Additive Manufacturing Using Image-Labeling (이미지 라벨링을 이용한 적층제조 단면의 결함 분류)

  • Lee, Jeong-Seong;Choi, Byung-Joo;Lee, Moon-Gu;Kim, Jung-Sub;Lee, Sang-Won;Jeon, Yong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.7-15
    • /
    • 2020
  • Recently, the fourth industrial revolution has been presented as a new paradigm and additive manufacturing (AM) has become one of the most important topics. For this reason, process monitoring for each cross-sectional layer of additive metal manufacturing is important. Particularly, deep learning can train a machine to analyze, optimize, and repair defects. In this paper, image classification is proposed by learning images of defects in the metal cross sections using the convolution neural network (CNN) image labeling algorithm. Defects were classified into three categories: crack, porosity, and hole. To overcome a lack-of-data problem, the amount of learning data was augmented using a data augmentation algorithm. This augmentation algorithm can transform an image to 180 images, increasing the learning accuracy. The number of training and validation images was 25,920 (80 %) and 6,480 (20 %), respectively. An optimized case with a combination of fully connected layers, an optimizer, and a loss function, showed that the model accuracy was 99.7 % and had a success rate of 97.8 % for 180 test images. In conclusion, image labeling was successfully performed and it is expected to be applied to automated AM process inspection and repair systems in the future.

A Kernel based Possibilistic Approach for Clustering and Image Segmentation (클러스터링 및 영상 분할을 위한 커널 기반의 Possibilistic 접근 방법)

  • Choi, Kil-Soo;Choi, Byung-In;Rhee, Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.889-894
    • /
    • 2004
  • The fuzzy kernel c-means (FKCM) algorithm, which uses a kernel function, can obtain more desirable clustering results than fuzzy c-means (FCM) for not only spherical data but also non-spherical data. However, it can be sensitive to noise as in the FCM algorithm. In this paper, a kernel function is applied to the possibilistic c-means (PCM) algorithm and is shown to be robust for data with additive noise. Several experimental results show that the proposed kernel possibilistic c-means (KPCM) algorithm out performs the FKCM algorithm for general data with additive noise.

Blind Channel Estimator based on the RLS algorithm (RLS 알고리즘에 기반을 둔 블라인드 채널 추정)

  • 서우정;하판봉;윤태성
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.655-658
    • /
    • 1999
  • In this study, We derived Recursive Least Squares(RLS) algorithm with adaptive maximum -likelihood channel estimate for digital pulse amplitude modulated sequence in the presence of intersymbol interference and additive white Gaussian noise. RLS algorithms have better convergence characteristics than conventional algorithms, LMS Least Mean Squares) algorithms.

  • PDF

Multi-criteria Vertical Handoff Decision Algorithm Using Hierarchy Modeling and Additive Weighting in an Integrated WLAN/WiMAX/UMTS Environment- A Case Study

  • Bhosale, Sahana;Daruwala, Rohin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.35-57
    • /
    • 2014
  • Multi-criteria decision making (MCDM) algorithms play an important role in ensuring quality of service in an integrated HetNets (Heterogeneous Networks). The primary objective of this paper is to develop a multi-criteria vertical handoff decision algorithm (VHDA) for best access network selection in an integrated Wireless Local Area Network (WLAN)/Universal Mobile Telecommunications System (UMTS)/Worldwide Interoperability for Microwave Access (WiMAX) system. The proposed design consists of two parts, the first part is the evaluation of an Analytic Hierarchy Process (AHP) to decide the relative weights of handoff decision criteria and the second part computes the final score of the weights to rank network alternatives using Simple Additive Weighting (SAW). SAW ranks the network alternatives in a faster and simpler manner than AHP. The AHP-SAW mathematical model has been designed, evaluated and simulated for streaming video type of traffic. For other traffic type, such as conversational, background and interactive, only simulation results have been discussed and presented in brief. Simulation results reveal that the hierarchical modelling and computing provides optimum solution for access network selection in an integrated environment as obtained results prove to be an acceptable solution to what could be expected in real life scenarios.

A Modified Soft Output Viterbi Algorithm for Quantized Channel Outputs

  • Lee Ho Kyoung;Lee Kyoung Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.663-666
    • /
    • 2004
  • In this paper, a modified-SOYA (soft output viterbi algorithm) of turbo codes is proposed for quantized channel receiver filter outputs. We derive optimum branch values for the Viterbi algorithm. Here we assume that received filter outputs are quantized and the channel is additive white Gaussian noise. The optimum non-uniform quantizer is used to quantize channel receiver filter outputs. To compare the BER (bit error rate) performance we perform simulations for the modified SOYA algorithm and the general SOYA

  • PDF

Adaptive Parameter Estimation for Noisy ARMA Process (잡음 ARMA 프로세스의 적응 매개변수추정)

  • 김석주;이기철;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.380-385
    • /
    • 1990
  • This Paper presents a general algorithm for the parameter estimation of an antoregressive moving average process observed in additive white noise. The algorithm is based on the Gauss-Newton recursive prediction error method. For the parameter estimation, the output measurement is modelled as an innovation process using the spectral factorization, so that noise free RPE ARMA estimation can be used. Using apriori known properties leads to algorithm with smaller computation and better accuracy be the parsimony principle. Computer simulation examples show the effectiveness of the proposed algorithm.

An Efficient and Stable Congestion Control Scheme with Neighbor Feedback for Cluster Wireless Sensor Networks

  • Hu, Xi;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4342-4366
    • /
    • 2016
  • Congestion control in Cluster Wireless Sensor Networks (CWSNs) has drawn widespread attention and research interests. The increasing number of nodes and scale of networks cause more complex congestion control and management. Active Queue Management (AQM) is one of the major congestion control approaches in CWSNs, and Random Early Detection (RED) algorithm is commonly used to achieve high utilization in AQM. However, traditional RED algorithm depends exclusively on source-side control, which is insufficient to maintain efficiency and state stability. Specifically, when congestion occurs, deficiency of feedback will hinder the instability of the system. In this paper, we adopt the Additive-Increase Multiplicative-Decrease (AIMD) adjustment scheme and propose an improved RED algorithm by using neighbor feedback and scheduling scheme. The congestion control model is presented, which is a linear system with a non-linear feedback, and modeled by Lur'e type system. In the context of delayed Lur'e dynamical network, we adopt the concept of cluster synchronization and show that the congestion controlled system is able to achieve cluster synchronization. Sufficient conditions are derived by applying Lyapunov-Krasovskii functionals. Numerical examples are investigated to validate the effectiveness of the congestion control algorithm and the stability of the network.

Evaluation of Robust Classifier Algorithm for Tissue Classification under Various Noise Levels

  • Youn, Su Hyun;Shin, Ki Young;Choi, Ahnryul;Mun, Joung Hwan
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.87-96
    • /
    • 2017
  • Ultrasonic surgical devices are routinely used for surgical procedures. The incision and coagulation of tissue generate a temperature of $40^{\circ}C-150^{\circ}C$ and depend on the controllable output power level of the surgical device. Recently, research on the classification of grasped tissues to automatically control the power level was published. However, this research did not consider the specific characteristics of the surgical device, tissue denaturalization, and so on. Therefore, this research proposes a robust algorithm that simulates noise to resemble real situations and classifies tissue using conventional classifier algorithms. In this research, the bioimpedance spectrum for six tissues (liver, large intestine, kidney, lung, muscle, and fat) is measured, and five classifier algorithms are used. A signal-to-noise ratio of additive white Gaussian noise diversifies the testing sets, and as a result, each classifier's performance exhibits a difference. The k-nearest neighbors algorithm shows the highest classification rate of 92.09% (p < 0.01) and a standard deviation of 1.92%, which confirms high reproducibility.

Efficient Mixture IMM Algorithm for Speech Enhancement under Nonstationary Additive Colored Noise (시변가산유색잡음하의 음성 향상을 위한 효율적인 Mixture IMM 알고리즘)

  • 이기용;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.42-47
    • /
    • 1999
  • In this paper, a mixture interacting multiple model (MIMM) algorithm is proposed to enhance speech contaminated by additive nonstationary noise. In this approach, a mixture hidden filter model (HFM) is used to model the clean speech and the noise process is modeled by a single hidden filter. The MIMM algorithm, however. needs large computation time because it is a recursive method based on multiple Kalman filters with mixture HFM. Thereby, a computationally efficient implementation of the algorithm is developed by exploiting the structure of the Kalman filtering equation. The simulation results show that the proposed method offers performance gain compared to the previous results in [4,5] with slightly increased complexity.

  • PDF