• Title/Summary/Keyword: Additional settlements

Search Result 28, Processing Time 0.031 seconds

A Model Test on the Settlements of Adjacent Structures by Excavation (모형실험을 통한 굴착시 인접 구조물의 침하량 평가)

  • 석정우;최광철;김운영;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.17-27
    • /
    • 1999
  • It comes to be an important point to judge precisely the effects of excavation on adjacent ground and structures. It is incorrect to evaluate the ground settlement by excavation without considering the adjacent structure. In this study, laboratory scale tests were carried out by varying the position of structure under the condition of different system stiffness and wall friction to evaluate the behavior of adjacent structures and ground by excavation. When the distance between the structures and the wall was less than 0.3 times of the excavation depth, the ground settlement increased by 181%. No additional effect was observed when the distance was more than 1.0H. As the embedded depth was deeper, the influence zone was smaller, and few additional settlements and angular displacement were observed when the embedded depth was more than 0.75H.

  • PDF

Case history in prediction of consolidation settlement and monitoring (준설매립 초연약지반의 압밀침하 거동 및 계측 사례)

  • Jeon, Je-Sung;Lee, Jong-Wook;Im, Eun-Sang;Kim, Jae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1712-1716
    • /
    • 2008
  • Performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area has been conducted. From field monitoring results, excessive ground settlement compared to predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation was occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared to field monitoring results after additional surcharge was applied.

  • PDF

Differential settlements in foundations under embankment load: Theoretical model and experimental verification

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun;Su, Hui
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.283-303
    • /
    • 2015
  • To research and analyze the differential settlements of foundations specifically, site investigations of existing railways and metro were firstly carried out. Then, the centrifugal test was used to observe differential settlements in different position between foundations on the basis of investigation. The theoretical model was established according to the stress diffusion method and Fourier method to establish an analytical solution of embankment differential settlement between different foundations. Finally, theoretical values and experimental values were analyzed comparatively. The research results show that both in horizontal and vertical directions, evident differential settlement exists in a limited area on both sides of the vertical interface between different foundations. The foundation with larger elastic modulus can transfer more additional stress and cause relatively less settlement. Differential settlement value decreases as the distance to vertical interface decreases. In the vertical direction of foundation, mass differential settlement also exists on both sides of the vertical interface and foundation with larger elastic modulus can transfer more additional stress. With the increase of relative modulus of different foundations, foundation with lower elastic modulus has larger settlement. Meanwhile, differential settlement is more obvious. The main error sources in theoretical and experimental values include: (a) different load form; (b) foundation characteristics differences; (c) modulus conversion; (d) effect of soil internal friction.

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.

Effect of groundwater fluctuation on load carrying performance of shallow foundation

  • Park, Donggyu;Kim, Incheol;Kim, Garam;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.575-584
    • /
    • 2019
  • The groundwater level (GWL) is an important subsoil condition for the design of foundation. GWL tends to fluctuate often with seasonal variation, which may cause unexpected, additional settlements with some reductions in the safety margin of foundation. In this study, the effects of fluctuating GWL on the load carrying and settlement behavior of footing were investigated and quantified. A series of model load tests were conducted for various GWL and soil conditions using a hydraulically-controlled chamber system. Changes in load level and rising and falling GWL fluctuation cycle were considered in the tests. Settlements during GWL rise were greater than those during GWL fall. The depth of the GWL influence zone ($\underline{d}_{w,inf}$) varied in the range of 0.3 to 1.5 times footing width and became shallower as GWL continued to fluctuate. Design equations for estimating GWL-induced settlements for footings were proposed. The GWL fluctuation cycle, load level and soil density were considered in the proposed method. Changes in settlement and factor of safety with GWL fluctuation were discussed.

Numerical Analysis on the Behaviors of the Breakwater Utilizing Buoyancy for Soft Ground (수치해석을 통한 연약지반용 부력식 기초 방파제의 거동 분석)

  • Yun, Hee-Suk;Jang, In-Sung;Kwon, O-Soon;Lee, Sun-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.93-103
    • /
    • 2008
  • For conventional gravity type offshore structures constructed on the soft ground, which is located on the western and/or southern Korea, the excessive consolidation settlements are caused by the self-weight of the structures and so additional ground treatment methods are generally needed. Several types of improved foundation systems utilizing buoyancy applicable to even the soft ground were introduced for economical and efficient design of the offshore structure. In this study, a series of numerical simulations on the consolidation and lateral behaviors of breakwaters with the improved foundation systems utilizing buoyancy were carried out. From the results of numerical simulations it is found that the foundation systems utilizing buoyancy are efficient for reducing the maximum consolidation settlements without reducing lateral safety.

A Practical App개ach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part I (Evaluation and Use of Characteristic Deformation Behaviors) (포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part I (특성변형거동의 평가와 활용))

  • Kim Chang-Youb;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.83-98
    • /
    • 2005
  • In this paper, a conceptual approach of the stress path method was newly proposed for a rational estimation of settlements of saturated clay deposits. In the proposed approach, settlement-related characteristic deformation behaviors of a specific clay deposit, which can cover all probable stress changes expected in the field, are experimentally evaluated in advance. Then settlements of various structures constructed on the deposit are easily estimated with only the characteristic deformation behaviors and without any additional experimental effort. In Part I of this paper, in order to provide practicality to the new conceptual approach, we developed a detailed procedure which is capable of evaluating characteristic deformation behaviors of a saturated clay deposit with only a limited number of tests and easily predicting deformations under a given stress change using the characteristic deformation behaviors. The applicability of the developed procedure was clearly shown by presenting an actual application example.

Sequential Analysis of Adjacent Ground Behaviors Caused by Deep Excavations (굴착 공정별 주변지반 거동 분석)

  • Seo Min-Woo;Seok Jeong-Woo;Yang Ku-Seung;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.19-28
    • /
    • 2006
  • Long-term field observations were performed in three excavation sites in order to investigate the displacement behavior of adjacent ground during overall excavation procedure, where the depths of deep excavations were 15 m$\∼$29 m. In this study, ground settlements and lateral displacements of braced wall measured during installation of retaining wall and removal of bracing were specially focused to evaluate the behavior quantitatively according to three-stage-divided procedure, i.e. pre-excavation, main excavation, and removal of bracing. Through field measurements on three excavation sites, lateral displacements induced during removal of bracing are approximate to 40$\%$ of the amount found during main excavation stage and additional adjacent ground deformation during post-excavation procedure ranges from 18$\%$ to 33$\%$ of that found during main excavation stage, based on the settlement volume. In conclusion, it was quantitatively identified in this study that the deformations of adjacent ground during pre- and post-excavation stage were not negligible.

Deformation Behavior of Existing Concrete-Faced Rockfill Dam due to Raising (증고에 따른 기존 CFRD 댐체의 변형거동)

  • Shin, Donghoon;Cho, Sungeun;Jeon, Jesung;Lee, Jongwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.77-83
    • /
    • 2007
  • In this study, deformation behavior of existing concrete face rockfill dam, which is raised to a certain height to enhance storage capacity or to improve hydraulic and hydrologic stability, is examined using numerical analysis method. The results obtained from FEM analysis show a possibility that additional fill at downstram slope of existing CFRD dam body may lead undesirable deformations and stresses in existing dam body, especially in face concrete, such as settlements in upper part and bulging in lower part, excessive bending moments, and eventualy tensile cracks. Therefore, in designing multi-staged raising construction of CFRD, it is essential to consider deformations and stresses to be developed within and between exisiting dam body and added parts due to additional fill, and to prepare a proper measure to prevent abnormal deformations and stresses in the dam body including added parts.

  • PDF

Grid Unit Based Analysis of Climate Change Driven Disaster Vulnerability in Urban Area (격자단위 분석기법을 적용한 도시 기후변화 재해취약성분석)

  • Hong, Jeajoo;Lim, HoJong;Ham, YoungHan;Lee, ByoungJae
    • Spatial Information Research
    • /
    • v.23 no.6
    • /
    • pp.67-75
    • /
    • 2015
  • Today, because human settlements are concentrated into urban area, urban planning and management technique considering the complexity, diversity, and advanced situations of urban living space is being requested. Especially, to effectively respond to large and diverse climate change driven disaster, it is necessary to develop urban planning technique including land use, infrastructure planning based on disaster vulnerability analysis. However, because current urban climate change disaster vulnerability analysis system(UC-VAS) is using census output area as spatial analysis unit, it is difficult to utilize the analysis results for specific urban planning. Instead, this study applies the grid manner to two study areas. The analysis results show that it can generate more detailed results and it can be used for detailed zoning decision by comparing with areal photos. Furthermore, by describing the limitation of the grid manner and providing professional way to secure additional scientific character and objectivity of the future urban climate change disaster vulnerability analysis system, it is expected that this study contributes to the effectiveness of system management.