• Title/Summary/Keyword: Additional gas

Search Result 551, Processing Time 0.034 seconds

Effect of additional gases on the Color of TixN Coated Film (TixN Coating층의 색상에 미치는 첨가원소의 영향)

  • 김학동;조성석
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.127-134
    • /
    • 1998
  • Stainless steel is being used widely for various purposes due to its good corrosion resistance. There has been much research to produce a colored and corrosion-resistant stainless steel by several methods to use in decorating. In this experiment, we coated TiN(C,O,H)films on the SUS304 substrates with the DC magnetron sputtering system and then studied the texture and color of the films as a function of additional gases being inserted into the system. A (220) texture of TixN film changed to (200) by the addition of either hydrogen or the acetylene and changed further to (111) with an increase of the additional acetylene content. The addition of oxygen gas changed from the texture(220) to (111) to (200). The color of the TixN film changed from gold to gray to green with the increase of the content by the addition of oxygen gas, while it changed to pink and finally to gray with the increased of the content by the addition of acetylene gas. Reflectance increased in the region of short wavelength by the addition of hydrogen, but decreased with the increase of the oxygen and the acetylene content.

  • PDF

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

Study on the Improvement of Efficiency in Dehydration Process of LNG Liquefaction Plant Using Molecular Sieve (분자체를 이용한 LNG 액화 플랜트 탈수 공정의 효율성 향상에 관한 연구)

  • JONGHWA PARK;DONSANG YU;DAEMYEONG CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • The natural gas dehydration process plays a central role in liquefying LNG. This study proposes two natural gas dehydration process systems applicable to liquefied natural gas (LNG) liquefaction plants, and compares and analyzes energy optimization measures through simulation. The fuel gas from feed stream (FFF) case, which requires additional equipment for gas circulation, disadvantages are design capacity and increased energy. On the other hand, the end flash gas (EFG) case has advantages such as low initial investment costs and no need for compressors, but has downsides such as increased power energy and the use of gas with different components. According to the process simulation results, the required energy is 33.22 MW for the FFF case and 32.86 MW for the EFG case, confirming 1.1% energy savings per unit time in the EFG case. Therefore, in terms of design pressure, capacity, device configuration, and required energy, the EFG case is relatively advantageous. However, further research is needed on the impact of changes in the composition of regenerated gas on the liquefaction process and the fuel gas system.

Characteristic Evaluation of Weldments with Different Supply of Solid Wire in Electro Gas Welding (일렉트로 가스 용접에서 솔리드 와이어 송급량에 따른 용접부 특성 평가)

  • Bae, Sang-Deuk;Kim, Dae-Ju;Kim, Yeong-Pil;Jin, Yun-Geun;Kim, Gyeong-Ju;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.124-126
    • /
    • 2007
  • The study was performed in order to develop high efficient Electrode Gas Welding with additional solid wire by means of a surplus heat source. This technique can be reduced welding heat input in the weldments, welding speed can be increased over 30%, and mechanical properties can be more excellent than traditional method.

  • PDF

Cosmological Gas in RAMSES

  • Snaith, Owain N.;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.56.1-56.1
    • /
    • 2017
  • The distribution of gas on cosmological scales is vital to our understanding of galaxy formation. Using the RAMSES cosmological hydrodynamical simulation code we have explored the evolution of the gas properties in a cosmological volume. We have identified the effect of the maximum simulation force resolution, and the resolution of the initial conditions, on the gas density power spectrum, as well as artefacts due to the RAMSES algorithm. The RAMSES methodology can add spurious power on small scales, particularly in low resolution simulations. This effect can be expected to have a strong impact on the results of RAMSES simulations, because this additional power appears at specific epochs, implying a sudden change to the system.

  • PDF

An experimental study on the mixing of evaporating liquid spray in a duct flow (덕트 유동에서 증발을 수반하는 액상 스프레이의 혼합 특성에 대한 실험적 연구)

  • Kim, Y.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.30-38
    • /
    • 2006
  • High temperature furnaces such as power plant and incinerator contribute considerable part of NOx generation and face urgent demand of De-NOx system. Reducing agent is injected into the flue gas flow to activate do-NOx system. Almost SCR system adopt vaporized ammonia injection system. Vaporizer, dilution system and additional space are needed to gasify and inject ammonia. Liquid spray injection system can simplify and economize post-treatment system of flue gas. In this study, mixing caused by gas or liquid injection of reducing agent into flue gas duct was investigated experimentally. Carbonated water was used as tracer and simulated agent and mixing of liquid spray in a duct flow was studied. To achieve that, the angle of attack of static mixer is simulated and $CO_2$ concentration is measured.

  • PDF

A Case Study on The Reduction and Examination for Noise and Vibration of Backpass Heat Surface in the Power Plant Boiler (발전용 보일러의 후부 전열면 소음진동 저감에 관한 사례 연구)

  • Lee, Gyoung-Soon;Lee, Tae-Hoon;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.642-647
    • /
    • 2008
  • The boiler structure is determined by combustion characteristics and construction costs in the combustion chamber of a large commercial boiler. The heat transfer in boiler is composed of the radiation and the convection. The convective heat transfer has happened to back-pass heating surface. The combustion gas sequentially passes through the reheater tube, 1st economizer tube, and 2nd economizer tube. In case of being lowered in boiler height, we have to install additional tube bundle in back-pass heating surface for increasing the heat transfer of boiler, which causes the noise and vibration from combustion gas. When the combustion gas passes through the back-pass tube bundle in specified load of commercial boiler, this paper analyzes the acoustic characteristics between vortex-shedding frequency and natural frequency in tube bundle cavity. The case study reduce the resonance by changing natural frequency characteristics of tube-bundle cavity using a way to install ant-noise baffle in the direction of combustion gas flow.

  • PDF

Design of the recuperator for the gas turbine/fuel cell hybrid power generating system (가스터빈/연료전지 혼합발전 시스템의 열교환기 설계)

  • Kwak, Jae-Su;Yang, Soo-Seok;Lee, Dae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2105-2110
    • /
    • 2004
  • Plate-fin type recuperators for the gas turbine/fuel cell hybrid power generating system were designed using commercial design software, MUSE. Heat transfer efficiency and total pressure drop in the recuperator were calculated to confirm required recuperator performance. Both counter flow and cross flow type plate-fin recuperators were designed. Results show that the counter flow type has higher efficiency and short core length, but the cross flow type is simpler to construct because the cross flow type does not need additional distributors. Two or three headers for the each recuperator core will be designed and tested to evaluate best header design. The designed recuperators and headers which will be designed later will be constructed, tested, and used in gas turbine/fuel cell hybrid power generating system.

  • PDF

Behavior of Initial Formation of Iron Nitride on Carbon Steel at Low Pressure Gas Nitriding (저압가스질화에서 탄소강의 초기 화합물층 형성 거동)

  • Kim, Yoon-Kee;Kim, Sang-Gweon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Growth behaviors of iron-nitride on S45C steels at low pressure gas nitriding were examined. Surfaces of the steels covered with fine and porous oxide during the pre-oxidation using $N_2O$ gas. Well faceted particles connected with them were observed after 1 min nitriding. They grew steadily and filled inter-pores during additional nitriding process. From the X-ray diffraction analysis, ${\gamma}'$-iron nitride was dominantly formed at the initial stage but the amount of ${\varepsilon}$-iron nitride was rapidly increased as nitriding treatment time. The porous layer was formed on the particles and thickened up to half of nitride layer after 60 min nitriding. The observed growth behaviors were discussed in internal stress related with volume expansion involved in transforming from iron to iron-nitrides.

Review on the chemicals used for hydraulic fracturing during shale gas recovery (쉐일가스 생산을 위한 수압파쇄에 사용되는 화학물질)

  • Kang, Byoung-Un;Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.517-524
    • /
    • 2014
  • Two key technologies of horizontal drilling and hydraulic fracturing are recognized to achieve the rapid growth of shale gas production, in specific, in the United States during last decade. The claims between environmentalists and oil companies have been debating in terms of water contamination. Nowadays, voluntary publication of chemicals from shale gas players are available in the website, FracFocus. This paper introduces chemicals that are currently used in hydraulic fracturing process. Among chemicals, guar gum and guar derivatives are dominantly consumed to increase the viscosity of hydrofracking fluids. The role of additional additives, such as breakers and biocides, is presented by explaining how they cut down the molecular structure of guar gum and guar derivatives. In addition, crosslinking agent, pH controller, friction reducer, and water soluble polymers are also presented.