• Title/Summary/Keyword: Addition polymerization

Search Result 369, Processing Time 0.021 seconds

Reversible Addition-Fragmentation Chain Transfer (RAFT) Bulk Polymerization of Styrene: Effect of R-Group Structures of Carboxyl Acid Group Functionalized RAFT Agents

  • Lee Jung Min;Kim Ok Hyung;Shim Sang Eun;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.236-242
    • /
    • 2005
  • Three dithioester-derived carboxyl acid functionalized RAFT(reversible addition-fragmentation chain transfer) agents, viz. acetic acid dithiobenzoate, butanoic acid dithiobenzoate and 4-toluic acid dithiobenzoate, were used in the RAFT bulk polymerization of styrene, in order to study the effects of the R-group structure on the living nature of the polymerization. By conducting the polymerization with various concentrations of the RAFT agents and at different temperatures, it was found that the R-group structure of the RAFT agents plays an important role in the RAFT polymerization; the bulky structure and radical stabilizing property of the R-group enhances the living nature of the polymerization and allows the polymerization characteristics to be well controlled.

The Effect of Camphorsulfonic Acid in TEMPO-Mediated Bulk and Dispersion Polymerization of Styrene

  • Oh Sejin;Kim Gijung;Ko Narae;Shim Sang Eun;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.187-193
    • /
    • 2005
  • The TEMPO-mediated living free-radical bulk and dispersion polymerization of styrene in the presence of camphorsulfonic acid (CSA) are investigated. In the absence of TEMPO and CSA in the bulk polymerization, a conversion of $93\%$ is achieved within 6 hr of polymerization. When only TEMPO is involved in this polymerization, the pseudo-living free-radical polymerization is well achieved, however, the polymerization rate becomes quite slow. This retardation of the polymerization rate is solved by the addition of a low concentration of CSA. In the TEMPO-mediated dispersion polymerization in the presence of CSA, similar trends in the conversion, kinetics, and PDI are observed as those observed in the case of bulk polymerization. When only TEMPO is used in the dispersion polymerization, the resulting particle size becomes quite broad, due to the prolonged polymerization time. However, when a 1.0 molar ratio of CSA to TEMPO is added to the TEMPO-mediated dispersion polymerization, fairly mono-disperse PS microspheres having an average size of 5.83 $\mu$m and a CV of 3.4$\%$ are successfully obtained, due to the narrow molecular weight distribution of the intermediate oligomers and shortening of the polymerization time. This result indicates that the addition of CSA to the TEMPO-mediated bulk and the use of dispersion polymerization not only shortens the polymerization time, but also greatly improves the uniformity of the microspheres.

Effect of latex gloves on polymerization inhibition of addition silicone impression materials (라텍스 글러브가 시판되는 3종류 부가중합형 실리콘 인상재의 중합에 미치는 영향)

  • Kim, Soo-Hwa
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.3
    • /
    • pp.369-379
    • /
    • 2009
  • This study investigated the polymerization inhibition effect of latex gloves on addition silicone impression material. Three different kinds of addition silicone impression materials and a natural latex gloves were used in this study. The results were as follows. 1. Compared to the control group, all of those three kinds of impression materials took longer curing time in order of unwashed, alcohol and washed group, on the other hand, degloving group had shorter curing time than control group(p<0.05). 2. By the type of impression materials, there was no significant difference observed between Exafine and Twinz in ungloved group, Exafine and Imprint II in unwashed group, and Exafine and Twinz in degloving group(p>0.05). 3. The degree of polymerization at 6 minutes after mixing impression materials was evaluated by dividing its range into score 1 to 5. All of the impression materials got score 5 in control group and degloving group, which implies perfect polymerization. In unwashed group, most of them appeared to be score 2 while score 3 were most frequently observed in alcohol group and score 4 in washed group. Thus each group showed differences in the degree of polymerization(p<0.05).

  • PDF

In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Hwang, Deok-Ryul;Hong, Jin-Ho;Lee, Jeong-Woo;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

Comparative Study of Physical Properties of Functional Ophthalmic Hydrogel Lens Using Photo and Thermal Polymerization

  • Kim, Duck-Hyun;Seok, Jae-Wuk;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.148-153
    • /
    • 2017
  • In this study, HEMA, MMA, AA, and EGDMA were used as basic combinations for manufacturing hydrophilic lenses for ophthalmic applications. In addition, AIBN (thermal polymerization initiator), 2H2M (photo polymerization initiator), and 3-hydroxypyridine (additive) were used to manufacture hydrophilic ophthalmic lenses through thermal polymerization and photo polymerization before their physical properties were measured. The results showed that when ophthalmic lenses were prepared via thermal polymerization and photo polymerization using 3-hydroxypyridine as an additive, their optical and physical properties and surface structures were different in each case, but they all satisfied the physical properties required for ophthalmic lenses.

Rate-acceleration of TEMPO-mediated Polymerization of Styrene in the Presence of Various Acids

  • Hong, Chang-Kook;Jang, Heang-Sin;Hong, Sang-Hyun;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • The acceleration effect of various organic acids, such as methanesulfonic acid (MSA), ethanesulfonic acid (ESA), 4,4'-sulfonyldibenzoic acid (SDA), diphenylacetic acid (DPAA), and $\rho$-toluenesulfonic acid (TSA), on the rate of styrene bulk polymerization with 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) and benzoyl peroxide (BPO) was investigated. The addition of organic acids significantly accelerated the rate. Among these organic acids, DPAA showed an efficient rate-accelerating effect with living nature of polymerization. When DPAA was used as a rate-accelerating additive for TEMPO-mediated living free radical polymerization (LFRP), the rate of polymerization was dramatically enhanced, the linearity of reaction kinetics was successfully maintained, and the polydispersity was effectively controlled.

Comparative Study of Polymerization Environment for Hydrogel Ophthalmic Lens

  • Kim, Duck-Hyun;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.696-701
    • /
    • 2018
  • This study is carried out to evaluate the commercial feasibility of the room temperature and thermal polymerization method as a lens manufacturing method. All samples are found to be transparent after polymerization, thereby indicating that their physical and surface properties are suitable for hydrogel ophthalmic lenses. The optical and physical properties of the lenses are compared. The water content of the samples that are prepared via a room temperature polymerization process decreases with the addition of MMA as compared to the water content of the samples that are prepared via thermal polymerization. When MMA and DMA are used as an additive for improving functionality, the wettability of the lenses increases. By measuring the AFM, the surface roughness is shown to improve more than MMA and DMA. Therefore, it is judged to be an appropriate process for manufacturing hydrogel lenses with high functionality.

Size and Uniformity Variation of Poly(MMA-co-DVB) Particles upon Precipitation Polymerization

  • Yang, Sun-Hye;Shim, Sang-Eun;Lee, Hui-Je;Kim, Gil-Pyo;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.519-527
    • /
    • 2004
  • Stable poly(methyl methacrylate-co-divinylbenzene) (poly(MMA-co-DVB)) microspheres were prepared by precipitation polymerization using acetonitrile as the main medium under various polymerization conditions, including modifications of the agitation speed, monomer and initiator concentrations, DVB content in the monomer mixture, and the use of various cosolvents. Gentle agitation was required to obtain smooth spherical particles. The individually stable microspheres were obtained at monomer concentrations of up to 15 vol% in an acetonitrile medium. The number-average diameter increased linearly with respect to increases in the monomer and initiator concentrations. We found, however, that the uniformity of the microspheres was independent of the variation of the polymerization ingredients because nuclei formation was solely influenced by the crosslinking reaction of the monomers. We obtained higher yields for the polymerization at higher concentrations of monomer and initiator. The concentration of DVB in the monomer mixture composition played an important role in determining not only the size of the microspheres but also the yield of the polymerization. In addition, although we employed various cosolvents as the polymerization medium, we found that acetonitrile/2-methoxyethanol was the only system that provided spherical particles without coagulation. This finding indicates that the precipitation polymerization is strongly dependent on the solvent used as the medium.

The Initiation Mechanism in the Polymerization of Trioxane with Titanium Tetrachloride (Ti$Cl_4$에 의한 Trioxane의 양이온 중합에 있어서 개시 반응기구)

  • Han Man Jung
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.423-430
    • /
    • 1978
  • The initiation mechanism of trioxane polymerization catalyzed by Ti$Cl_4$ in nitrobenzene was investigated. The kinetic studies revealed that the rate of polymerization was drastically decreased by the addition of a minute amount of water or methanol. A third substance as cocatalyst was not required for the polymerization. Measurements of dielectric constants gave no evidence for the zwitterionic mechanism of the polymerization. The electric conductivity measurements of polymerization system and the initiator solution showed that the initiation was started by Ti$Cl_3^+$ cation, formed by a disproportionation of the initiator in nitrobenzene.

  • PDF