The Effect of Camphorsulfonic Acid in TEMPO-Mediated Bulk and Dispersion Polymerization of Styrene

  • Oh Sejin (Department of Chemical Engineering, Inha University) ;
  • Kim Gijung (Department of Chemical Engineering, Inha University) ;
  • Ko Narae (Department of Chemical Engineering, Inha University) ;
  • Shim Sang Eun (Department of Chemical Engineering, Inha University) ;
  • Choe Soonja (Department of Chemical Engineering, Inha University)
  • Published : 2005.06.01

Abstract

The TEMPO-mediated living free-radical bulk and dispersion polymerization of styrene in the presence of camphorsulfonic acid (CSA) are investigated. In the absence of TEMPO and CSA in the bulk polymerization, a conversion of $93\%$ is achieved within 6 hr of polymerization. When only TEMPO is involved in this polymerization, the pseudo-living free-radical polymerization is well achieved, however, the polymerization rate becomes quite slow. This retardation of the polymerization rate is solved by the addition of a low concentration of CSA. In the TEMPO-mediated dispersion polymerization in the presence of CSA, similar trends in the conversion, kinetics, and PDI are observed as those observed in the case of bulk polymerization. When only TEMPO is used in the dispersion polymerization, the resulting particle size becomes quite broad, due to the prolonged polymerization time. However, when a 1.0 molar ratio of CSA to TEMPO is added to the TEMPO-mediated dispersion polymerization, fairly mono-disperse PS microspheres having an average size of 5.83 $\mu$m and a CV of 3.4$\%$ are successfully obtained, due to the narrow molecular weight distribution of the intermediate oligomers and shortening of the polymerization time. This result indicates that the addition of CSA to the TEMPO-mediated bulk and the use of dispersion polymerization not only shortens the polymerization time, but also greatly improves the uniformity of the microspheres.

Keywords

References

  1. M. Rodlert, E. Harth, I. Rees, and C. J. Hawker, J. Polym. Sci.; Part A: Polym. Chem., 38, 4749 (2000) https://doi.org/10.1002/1099-0518(200012)38:1+<4749::AID-POLA140>3.0.CO;2-D
  2. R. B. Grubbs, J. M. Dean, M. E. Broz, and F. S. Bates, Macromolecules, 33, 9522 (2000) https://doi.org/10.1021/ma001414f
  3. K. Matyjaszewski, D. A. Shipp, G. P. McNurthy, S. G. Gaynor, and T. Pakula, J. Polym. Sci.; Part A: Polym. Chem., 38, 2023 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11<2023::AID-POLA110>3.0.CO;2-L
  4. U. Uegaki, M. Kamigaito, and M. Sawamoto, J. Polym. Sci.; Part A: Polym. Chem., 37, 3003 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<3003::AID-POLA33>3.0.CO;2-K
  5. C. P. R. Nair, P. Chaumont, and D. Charmot, J. Polym. Sci.; Part A: Polym. Chem., 37, 2511 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2511::AID-POLA25>3.0.CO;2-1
  6. R. T. A. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postama, and S. H. Thang, Macromolecules, 33, 243 (2000) https://doi.org/10.1021/ma991451a
  7. J. D. Druliner, Macromolecules, 24, 6079 (1991) https://doi.org/10.1021/ma00023a005
  8. R. D. Puts and D. Y. Sogah, Macromolecules, 29, 3323 (1996) https://doi.org/10.1021/ma951578+
  9. C. J. Hawker, Trend Polym. Sci., 4, 183 (1996)
  10. K. Matyjaszewski, T. Shigemoto, J. M. J. Frechet, and M. Leduc, Macromolecules, 29, 4167 (1999) https://doi.org/10.1021/ma9600163
  11. K. Y. Baek, M. Kamigaito, and M. Sawamoto, J. Polym. Sci.; Part A: Polym. Chem., 40, 1972 (2002) https://doi.org/10.1002/pola.10279
  12. A. P. Narrainen, S. Pascual, and D. M. Haddleton, J. Polym. Sci.; Part A: Polym. Chem., 40, 439 (2002) https://doi.org/10.1002/pola.10122
  13. M. Chen, K. P. Ghiggino, A. Mau, E. Rizzardo, S. H. Thang, and G. J. Wilson, Chem. Comm., 24, 2276 (2002)
  14. L. I. Gabaston, R. A. Jackson, and S. P. Arms, Macromolecules, 31, 2883(1998) https://doi.org/10.1021/ma9718560
  15. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, Macromolecules, 26, 2987 (1993) https://doi.org/10.1021/ma00063a054
  16. J. Cao, J. He, C. Li, and Y. Yang, Polym. J., 33, 75 (2001) https://doi.org/10.1295/polymj.33.1
  17. Ph. Lecomte, I. Drapier, Ph. Dubois, Ph. Teyssie, and R. Jerome, Macromolecules, 30, 7631 (1997) https://doi.org/10.1021/ma970890b
  18. G. Chambard, P. de Man, and B. Klumperman, Macromol. Symp. 150, 45 (2000)
  19. K. Matyjaszewski, J. Qiu, N. V. Tsarevsky, and B. Charleux, J. Polym. Sci.; Part A: Polym. Chem., 38, 4724 (2000) https://doi.org/10.1002/1099-0518(200012)38:1+<4724::AID-POLA120>3.0.CO;2-Q
  20. M. J. Monteiro, M. Sjoberg, and H. de Brouwer, J. Polym. Sci.; Part A: Polym. Chem., 38, 3864 (2000) https://doi.org/10.1002/1099-0518(20001101)38:21<3864::AID-POLA30>3.0.CO;2-3
  21. A. Butte, G. Storti, and M. Morbidelli, Macromolecules, 34, 5885 (2001) https://doi.org/10.1021/ma002404h
  22. S. E. Shim, H. Jung, H. Lee, J. Biswas, and S. Choe, Polymer, 44, 5563 (2003) https://doi.org/10.1016/S0032-3861(03)00632-3
  23. K. E. J. Barrett, Dispersion Polymerization in Organic Media, London, Wiley, 1975
  24. H. Fudouz and Y. Xia, Adv. Mater., 15, 892 (2003) https://doi.org/10.1002/adma.200390005
  25. J. Ugelstad, P. Stenstad, L. Kilaas, W. S. Prestvik, A. Rian, K. Nustad, R. Herje, and A. Berge, Macromol. Symp., 101, 491 (1996)
  26. V. L. Covolan, L. H. I. Mei, and C. L. Rossi, Polym. Advan. Technol., 8, 44 (1997) https://doi.org/10.1002/(SICI)1099-1581(199701)8:1<44::AID-PAT613>3.0.CO;2-1
  27. C. M. Tseng, Y. Y. Lu, M. S. EI-Aasser, and J. W. Vanderhoff, J. Polym. Sci.; Polym. Chem., 24, 2995 (1986) https://doi.org/10.1002/pola.1986.080241126
  28. A. J. Paine, Macromolecules, 23, 3109 (1990) https://doi.org/10.1021/ma00214a013
  29. M. Holderle, M. Baumert, and R. Millhaupt, Macromolecules, 30, 3420 (1997) https://doi.org/10.1021/ma961517r
  30. S. E. Shim, S. Oh, Y. H. Chang, M.-J. Jin, and S. Choe, Polymer, 45, 4771 (2004)
  31. S. Shen, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci.; Part A: Polym. Chem., 32, 1087 (1994) https://doi.org/10.1002/pola.1994.080320611
  32. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Harner, and M. Saban, Macromolecules, 27, 7228 (1994) https://doi.org/10.1021/ma00102a039
  33. P. G. Odell, R. P. N. Veregin, L. M. Michalak, D. Brousmiche, and M. K. Georges, Macromolecules, 28, 8453 (1995) https://doi.org/10.1021/ma00128a073
  34. R. P. N. Veregin, P. G. Odell, L. M. Michalak, and M. K. Georges, Macromolecules, 29, 4161 (1996) https://doi.org/10.1021/ma951779d
  35. M. F. Cunningham, K. Tortosa, M. Lin, B. Keoshkerian, and M. K. Georges, J. Polym. Sci.; Part A: Polym. Chem., 40, 2828 (2002) https://doi.org/10.1002/pola.10377
  36. W. C. Buzanowski, J. D. Graham, D. B. Priddy, and E. Shero, Polymer, 33, 3055 (1992) https://doi.org/10.1016/0032-3861(92)90095-E
  37. K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209 (1985) https://doi.org/10.1139/v85-033