• 제목/요약/키워드: Added mass effect

검색결과 304건 처리시간 0.029초

The Effect of Added Mass of Water and Breath Mode in Fluid-Structure Coupled Vibration Analysis (부가질량 효과와 호흡모드를 고려한 구조-유체연성진동해석)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • 제9권4호
    • /
    • pp.71-76
    • /
    • 2005
  • Marine structures are often in contact with inner or outer fluid as stern, ballast and oil tanks. The effect of interaction between fluid and structure has to be taken into consideration when we estimate the dynamic response of the structure appropriately. Fatigue damages can also be sometimes observed in these tanks which seem to be caused by resonance. Thin walled tank structures in ships which are in contact with water and located near engine or propeller where vibration characteristics are strongly affected by the added mass of containing water. Therefore it is essentially important to estimate the added mass effect to predict vibration characteristics of tank structures. But it is difficult to estimate exactly the magnitude of the added mass because this is a fluid-structure interaction problem and is affected by the free surface, vibration modes of structural panels and the depth of water. I have developed a numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present study, the effect of added mass of containing water, the effect of structural constraint between panels on the vibration characteristics are investigated numerically and discussed. Especially a natural frequencies by the fluid interaction between 2 panels and a breath mode of the water tank are focused on.

  • PDF

3-D Vibration Analysis of Floating Structures Like Ships Using FEM-BEM

  • Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 1990년도 추계학술대회논문집; 한양대학교, 서울; 24 Nov. 1990
    • /
    • pp.107-112
    • /
    • 1990
  • In the vibration analysis of structure in fluid such as ships and offshore structures, the hydrodynamic added mass considerably affects the result of analysis. Therefore correct evaluation of the hydrodynamic added mass effect is required for an accurate analysis. But the correct evaluation of the effect is not simple because the added mass varies with the mode shape of vibration as well as the configuration of the structure. The universal method employed to evaluate added mass in ship hull vibration is Lewis's method via the introduction of 3 dimensional correction factor. But this conventional method is valid only for beam-like vibration.

  • PDF

Development of Simplified Formulae for Added Mass of a 2-D Floating Body with a Semi-Circle Section in a Finite Water Depth (유한 수심에서 반원형 부유체의 부가질량계수 약산식 개발)

  • Koo, Weoncheol;Kim, Jun-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.80-84
    • /
    • 2013
  • This study is to develop the simplified formulae for added mass coefficient of a 2-D floating body with a semi-circle section in a finite water depth. The semi-circle floating body may represent a simplified midship section transformed by Lewis form, which can be used for the ship motion analysis by strip theory. Since the added mass coefficient varies with motion frequencies and sea bottom effect, the correction factor representing the effect of water depth and frequencies is developed for accurate prediction of added mass. Using a two-dimensional numerical wave tank (NWT) technique based on the boundary element method (BEM) including sea bottom boundary the reference values of added mass are calculated to develop the correction factor. For verification and effectiveness of the formulae, the predicted added mass coefficients for various frequencies and water depth ratios are compared with the calculated values from NWT technique.

Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction

  • Lefrancois, Emmanuel;Brandely, Anais;Mottelet, Stephane
    • Coupled systems mechanics
    • /
    • 제5권3호
    • /
    • pp.235-254
    • /
    • 2016
  • A numerical model for fluid-structure interactions (abbr. FSI) is presented in the context of sloshing effects in movable, partially filled tanks to improve understanding of interactions between the fluid and the dynamics of a tank flexibly attached to a vehicle. The purpose of this model is to counteract the penalizing impact of the added mass effect on classical partitioned FSI coupling scheme: the proposed investigation is based on an added mass corrected version of the classical strongly coupled partitioned scheme presented in (Song et al. 2013). Results show that this corrected version systematically allows convergence to the coupled solution. In the rare cases where convergence is already obtained, the corrected version significantly reduces the number of iterations required. Finally, it is shown that the convergence limit imposed by added mass effect for the non-corrected coupling scheme, is directly dependent on the aspect ratio of the fluid domain and highly related to the precision order of the temporal discretization scheme.

Vibration Analysis of a Water Tank Structures (접수탱크구조의 진동해석)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • 제9권4호
    • /
    • pp.65-70
    • /
    • 2005
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. Many authors have studied vibration of cylindrical and rectangular tanks structures containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the present paper, coupling effect between panels of tank structure on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region have investigated numerically and experimentally.

  • PDF

A Study on Vibration Characteristics in Water Tank with Multi-panels (복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • 제14권6호
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.

Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition (경계조건과 두께 변화에 따른 사각탱크의 진동 특성)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • 제15권1호
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

  • Koo, Weoncheol;Kim, Jun-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.115-127
    • /
    • 2015
  • The aim of this study is to develop a simplified formula for added mass coefficients of a two-dimensional floating body moving vertically in a finite water depth. Floating bodies with various sectional areas may represent simplified structure sections transformed by Lewis form, and can be used for floating body motion analysis using strip theory or another relevant method. Since the added mass of a floating body varies with wave frequency and water depth, a correction factor is developed to take these effects into account. Using a developed two-dimensional numerical wave tank technique, the reference added masses are calculated for various water depths at high frequency, and used them as basis values to formulate the correction factors. To verify the effectiveness of the developed formulas, the predicted heave added mass coefficients for various wetted body sections and wave frequencies are compared with numerical results from the Numerical Wave Tank (NWT) technique.

The Study on the Added Moment of Inertia of Two Dimensional Cylinder induced by the Torsional Vibration coupled with the Flexural Vibration (자유수면(自由水面)에서의 비틀림 수평(水平)굽힘의 연성진동(連成振動)을 하는 선체단면형(船體斷面形)의 이차원적(二次元的) 부가관성(附加慣性) Moment에 관(關)한 연구(硏究))

  • S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • 제7권2호
    • /
    • pp.3-18
    • /
    • 1970
  • An investigation was made for the added mass moment of inertia induced by the rotational motion of the cylinder with hull section on water in order to obtain the information to estimate the natural frequency of the torsional vibration of ships. The special consideration to the effect of the draught upon the added mass moment of inertia is taken into account in the study. In this paper, the general expression for the added mass coefficients of moment of inertia of arbitary two dimensional forms induced by the torsional vibration, was derived by the author. Hence, the coefficients for these forms are represented as functions of parameters, the section area coefficient and draft beam ratio, from which the added mass coefficients for arbitrary forms can be obtained. The result was shown in a chart for estimation of the added mass moment of inertia induced by the torsional vibration, as first trial, for the convenience of practical use.

  • PDF

Natural Frequency of 2-dimensional Heaving Circular Cylinder (상하동요하는 2차원 원주의 고유진동수)

  • Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제45권4호
    • /
    • pp.389-395
    • /
    • 2008
  • It is very well known that the natural frequency of an oscillating body on the free surface is determinable only after the added mass is given. However, it is hard to find analytical investigations in which actually the natural frequency is obtained. Difficulties arise from the fact that in order to determine the natural frequency we need to compute the added mass at least for a range of frequencies, and to solve an equation where the frequency is a variable. In this study, first, a formula is obtained for the added mass, and then an equation for finding the natural frequency is defined and solved by Newton's iteration. It is confirmed that the formula shows a good agreement with the results given by Ursell(1949), and the value of natural frequency is reduced by 21.5% compared to the pre-natural frequency, which is obtained without considering the effect of added mass.