• Title/Summary/Keyword: Added mass

Search Result 925, Processing Time 0.041 seconds

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

Simulation-Based Determination of Hydrodynamic Derivatives and 6DOF Motion Analysis for Underwater Vehicle (시뮬레이션 기반 수중 운동체의 유체력 미계수 결정 및 6자유도 운동해석)

  • Go, Gwangsoo;Ahn, Hyung Taek;Ahn, Jin-Hyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • This paper introduces a simulation-based determination method for hydrodynamic derivatives and 6DOF (degrees-offreedom) motion analysis for an underwater vehicle. Hydrodynamic derivatives were derived from second-order modulus expansion and composed of the added mass, and linear and nonlinear damping coefficients. The added mass coefficients were analytically obtained using the potential theory. All of the linear and nonlinear damping coefficients were determined using CFD simulation, which were performed for various cases based on the actual operating condition. Then, the linear and nonlinear damping coefficients were determined by fitting the CFD results, which referred to 6DOF forces and moments acting on an underwater vehicle, with the least square method. To demonstrate the applicability of the current study, 6DOF simulations for three different scenarios (L-, U-, and S-turn) were carried out, and the results were validated on the basis of physical plausibility.

Effect of Austenitizing Temperature on the Hardenability and Tensile Properties of Boron Steels (오스테나이트화 온도에 따른 보론강의 경화능과 인장 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.497-502
    • /
    • 2015
  • The hardenability of boron steel specimens with different molybdenum and chromium contents was investigated using dilatometry and microstructural observations, and then was quantitatively measured at a critical cooling rate corresponding to 90 % martensite hardness obtained from a hardness distribution plotted as a function of cooling rate. Based on the results, the effect of an austenitizing temperature on the hardenability and tensile properties was discussed in terms of segregation and precipitation behavior of boron atoms at austenite grain boundaries. The molybdenum addition completely suppressed the formation of pro-eutectoid ferrite even at the slowest cooling rate of $0.2^{\circ}C/s$, while the chromium addition did at the cooling rates above $3^{\circ}C/s$. On the other hand, the hardenability of the molybdenum-added boron steel specimens decreased with an increasing austenitizing temperature. This is associated with the preferred precipitation of boron atoms since a considerable number of boron atoms could be concentrated along austenite grain boundaries by a non-equilibrium segregation mechanism. The secondary ion mass spectroscopy results showed that boron atoms were mostly segregated at austenite grain boundaries without noticeable precipitation at higher austenitization temperatures, while they formed as precipitates at lower austenitization temperatures, particularly in the molybdenum-added boron steel specimens.

Vibration Analysis of Rotary Specimen Rack (RSR) in a Still Fluid and Stress Analysis of Clamp Part of RSR (정지 유체 내에 있는 회전시료조사대의 진동해석 및 지지부의 응력해석)

  • 김성균;이동규;이근우;정운수;박진호
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • In this paper, in-air and in-water vibration characteristics of Rotary Specimen Rack (RSR) are estimated through 3D finite element modeling by using ANSYS software. Added mass is calculated by using Blevins' equation. To confirm the reasonability of the results presented in this study, obtained results are compared to those of using a theoretical equation. It is confirmed that in-water natural frequencies of the RSR are lower than in-air ones due to the added mass effect of the fluid. Also, to design clamp which needs to fix RSR, Von-Mises stress and displacement of RSR to clamp pressure are calculated.

Hydrodynamic Response of Spar with Single and Double Heave Plates in Regular Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.188-208
    • /
    • 2013
  • The motion response of floating structures should be adequately low to permit the operation of rigid risers along with dry well heads. Though Spar platforms have low heave responses under lower sea state, could become unacceptable in near resonance region of wave periods. Hence the hydrodynamic response, heave in particular, must be examined to ensure that it is minimized. To reduce heave motions, external damping devices are introduced and one such effective damping device is heave plate. Addition of heave plate can provide additional viscous damping and additional added mass in the heave direction which influence the heave motion. The present study focuses on the influence of heave plate on the hydrodynamic responses of Classic Spar in regular waves. The experimental investigation has been carried out on a 1:100 scale model of Spar with single and double heave plates in regular waves. Numerical investigation has been carried out to derive the hydrodynamic responses using ANSYS AQWA. The experimental results were compared with those obtained from numerical simulation and found to be in good agreement. The influence of disk diameter ratio, wave steepness, pretension in the mooring line and relative spacing between the plates on the hydrodynamic responses of Spar are evaluated and presented.

Experimental and analytical study on hydroelastic vibration of tank (선박내 접수탱크 진동에 대한 실험/이론적 연구)

  • Kim, Kuk-Su;Cho, H.D.;Kong, Y.M.;Heo, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.96-100
    • /
    • 2008
  • In this paper, a experimental and theoretical study is carried out on the hydroelastic vibration for a rectangular bottom and side plate of tank. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to plate vibration. It is assumed that the fluid is imcompressible and inviscid. Assumed mode method is utilized to the plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method. In order to verify the result, modal test was carried out for bottom/side plate of tank model by using impact hammer. It was found the fundamental natural frequency of bottom plate is lower than that of side plate of tank and theoretical result was in good agreement with that of commercial three-dimensional finite element program.

  • PDF

Cultural Characteristics of Antagonistic Bacterium, Bacillus licheniformis N1 against Botrytis cinerea (잿빛공팜이에 대한 길항균 Bacillus Iicheniformis N1의 배양적 특성)

  • 이재필;문병주
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 2001
  • This study was conducted to estimate the cultural characteristics, the production of antibiotic, and the selection of optimal media for mass culture of Bacillus licheniformis N1 isolate which was previously reported as an antagonistic bacterium to Botrytis cinerea. We investigated initial pH, temperatures and shaking speed for good cultural conditions and antibiotics production by N1 isolate. According to the results, the optimal conditions of initial pH, temperatures, and shaking speed were determined to be pH 5.0~5.5, 30~35$^{\circ}C$ and 250 rpm, respectively. Also, the optimal conditions for the antagonism by N1 isolate highly appeared in the initial pH as 5.0, and the mycelial growth inhibition was high when the substances used such as glucose or corn starch as carbon sources, and biji(soybean curd residue) flour as a nitrogen source. Furthermore, inhibitory area was significantly expanded, when 3% or 5% of corn starch was added into 5% of Biji flour as nitrogen source, were respectivley selected for mass culture of N1 isolate. Among them, 5% Biji flour medium showed higher cell density more than 10 times that in NB medium after 48 hour incubation. Therefore, the optimal medium was determined as 5% biji flour added 3~5% of corn starch for high density of cells.

  • PDF

Hydrodynamic coupling distance between a falling sphere and downstream wall

  • Lin, Cheng-Chuan;Huang, Hung-Tien;Yang, Fu-Ling
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In solid-liquid two phase flow, the knowledge of how descending solid particles affected by the presence of downstream wall is important. This work studies at what interstitial distance the velocity of a vertically descending sphere is affected by a downstream wall as a consequence of wall-modified hydrodynamic forces through a validated dynamic model. This interstitial distance-the hydrodynamic coupling distance ${\delta}_c-is$ found to decay monotonically with the approach Stokes number St which compares the particle inertia to viscous drag characterized by the quasi-steady Stokes' drag. The scaling relation ${\delta}_c-St-1$ decays monotonically as literature below the value of St equal to 10. However, the faster diminishing rate is found above the threshold value from St=10-40. Furthermore, an empirical relation of ${\delta}_c-St$ shows dependence on the drop height which clearly indicates the non-negligible effect of unsteady hydrodynamic force components, namely the added mass force and the history force. Finally, we attempt a fitting relation which embedded the particle acceleration effect in the dependence of fitting constants on the diameter-scaled drop height.

Inserting the mass proportional damping (MPD) system in a concrete shear-type structure

  • Silvestri, Stefano;Trombetti, Tomaso;Ceccoli, Claudio
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.177-193
    • /
    • 2003
  • This paper presents an illustrative example of the advantages offered by inserting added viscous dampers into shear-type structures in accordance with a special scheme based upon the mass proportional damping (MPD) component of the Rayleigh viscous damping matrix. In previous works developed by the authors, it has been widely shown that, within the class of Rayleigh damped systems and under the "equal total cost" constraint, the MPD system provides best overall performance both in terms of minimising top-storey mean square response to a white noise stochastic input and maximising the weighted average of modal damping ratios. A numerical verification of the advantages offered by the application of MPD systems to a realistic structure is presented herein with reference to a 4-storey reinforced-concrete frame. The dynamic response of the frame subjected to both stochastic inputs and several recorded earthquake ground motions is here analysed in detail. The results confirm the good dissipative properties of MPD systems and indicate that this is achieved at the expense of relatively small damping forces.