• Title/Summary/Keyword: Add-on output regulator

Search Result 2, Processing Time 0.017 seconds

Design of Output Regulator for Rejecting Periodic Eccentricity Disturbance in Optical Disc Drive

  • Shim, Hyung-Bo;Kim, Hyung-Jong;Chung, Chung-Choo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.452-457
    • /
    • 2003
  • An add-on type output regulator is proposed in this paper. By an add-on controller we mean an additional controller which operates harmonically with a pre-designed one. The role of the add-on controller is to reject a sinusoidal disturbance of unknown magnitude and phase but with known frequency. Advantages of the proposed controller include that (1) it can be used only when the performance of disturbance rejection needs to be enhanced, (2) when it is turned on or off, unwanted transient can be avoided (i.e., bumpless transfer), (3) it is designed for perfect disturbance rejection not just for disturbance reduction, (4) ability for perfect rejection is preserved even with uncertain plant model. This design may be promising for optical disc drive (ODD) systems in which disc eccentricity results in a sinusoidal disturbance. For ODD systems, the sensitivity function obtained by the pre-designed controller, which may have been designed by the lead-lag, $H_{\infty}$, or DOB (disturbance observer) technique, does not change much with the add-on controller except at the frequency of the disturbance. Since the add-on controller does the job of rejecting major eccentricity disturbance, the gain of the pre-designed controller does not have to be too high.

  • PDF

Voltage Control of Synchronous Generator for Ships using a PMG Type Digital Automatic Voltage Regulator (PMG Type 디지털 AVR을 이용한 선박용 동기발전기 출력전압제어)

  • Yu, Dong-Hwan;Park, Sang-Hoon;Won, Chung-Yuen;Yu, Jae-Sung;Lee, Sang-Seuk;Ahn, Sung-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • To get the constant output, synchronous generator field excitation is controlled by AVR(Automatic Voltage Regulator). Most of ships generator AVR uses the thyristor phase controlled rectifier. However this rectifier is difficult to realize that the fast control system because its control period is slower than MOSFET and IGBT type converter. Therefore, this paper deals with PMG(Permanent Magnet Generator) type digital AVR using MOSFET switch for ships synchronous generator. The composition of this digital AVR is very simple, the generator is under the short circuit accident, the output voltage becomes zero state and AVR can not operate. Thus generator is required to add CBC(Current Boosting Circuit) in an excitation circuit to flow output current. The performance of the proposed system is evaluated on a 10[kVA] experimental prototype circuit in place of real ships generator.