• 제목/요약/키워드: Adaptive-neuro control

검색결과 129건 처리시간 0.032초

적응형 뉴로-퍼지(ANFIS)를 이용한 도시철도 시스템 위험도 평가 연구 (A Study on the Risk Assessment for Urban Railway Systems Using an Adaptive Neuro-Fuzzy Inference System(ANFIS))

  • 탁길훈;구정서
    • 한국안전학회지
    • /
    • 제37권1호
    • /
    • pp.78-87
    • /
    • 2022
  • In the risk assessment of urban railway systems, a hazard log is created by identifying hazards from accident and failure data. Then, based on a risk matrix, evaluators analyze the frequency and severity of the occurrence of the hazards, conduct the risk assessment, and then establish safety measures for the risk factors prior to risk control. However, because subjective judgments based on the evaluators' experiences affect the risk assessment results, a more objective and automated risk assessment system must be established. In this study, we propose a risk assessment model in which an adaptive neuro-fuzzy inference system (ANFIS), which is combined in artificial neural networks (ANN) and fuzzy inference system (FIS), is applied to the risk assessment of urban railway systems. The newly proposed model is more objective and automated, alleviating the limitations of risk assessments that use a risk matrix. In addition, the reliability of the model was verified by comparing the risk assessment results and risk control priorities between the newly proposed ANFIS-based risk assessment model and the risk assessment using a risk matrix. Results of the comparison indicate that a high level of accuracy was demonstrated in the risk assessment results of the proposed model, and uncertainty and subjectivity were mitigated in the risk control priority.

기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계 (A design of neuro-fuzzy adaptive controller using a reference model following function)

  • 이영석;유동완;서보혁
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

Neuro-Fuzzy Systems: Theory and Applications

  • Lee, C.S. George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.29.1-29
    • /
    • 2001
  • Neuro-fuzzy systems are multi-layered connectionist networks that realize the elements and functions of traditional fuzzy logic control/decision systems. A trained neuro-fuzzy system is isomorphic to a fuzzy logic system, and fuzzy IF-THEN rule knowledge can be explicitly extracted from the network. This talk presents a brief introduction to self-adaptive neuro-fuzzy systems and addresses some recent research results and applications. Most of the existing neuro-fuzzy systems exhibit several major drawbacks that lead to performance degradation. These drawbacks are the curse of dimensionality (i.e., fuzzy rule explosion), inability to re-structure their internal nodes in a changing environment, and their lack of ability to extract knowledge from a given set of training data. This talk focuses on our investigation of network architectures, self-adaptation algorithms, and efficient learning algorithms that will enable existing neuro-fuzzy systems to self-adapt themselves in an unstructured and uncertain environment.

  • PDF

리아프노브 분석법 기반 비선형 적응제어 개요 및 연구동향 조사 (Nonlinear Adaptive Control based on Lyapunov Analysis: Overview and Survey)

  • 박진배;이재영
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.261-269
    • /
    • 2014
  • This paper provides an overview of the basics and recent studies of Lyapunov-based nonlinear adaptive control, the aim of which is to improve or maintain the performance and stability of the closed-loop system by cancelling out the presumable uncertainties in the nonlinear system dynamics. The design principles are essentially based on Lyapunov's direct method. In this survey, we provide a comprehensive overview of Lyapunov-based nonlinear adaptive control techniques with simplified effective design examples, which are to be elaborated as related recent results are gradually shown. The scope of the survey contains research on singularity problems in adaptive control, the techniques to deal with linearly and nonlinearly parameterized uncertainties, robust neuro-adaptive control, and adaptive control methodologies combined with various nonlinear control techniques such as sliding-mode control, back-stepping, dynamic surface control, and optimal/$H_{\infty}$ control.

A neuro-fuzzy adaptive controller

  • Chung, Hee-Tae;Lee, Hyun-Cheol;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.261-264
    • /
    • 1992
  • This paper proposes a neuro-fuzzy adaptive controller which includes the procedure of initializing the identification neural network(INN) and that of learning the control neural network(CNN). The identification neural network is initialized with the informations of the plant which are obtained by a fuzzy controller and the control neural network is trained by the weight informations of the identification neural network during on-line operation.

  • PDF

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.285-288
    • /
    • 2005
  • 신경회로망은 지능제어알고리즘 중의 하나로 학습능력을 가지고 있다. 이러한 학습능력 때문에 많은 분야에서 널리 사용되고 있으나, 지능제어의 단점인 안정도 문제를 수학적으로 증명하기 어렵다는 문제점을 갖고 있다. 본 논문에서는 신경회로망의 한 종류인 RBFN과 적응제어기법을 이용하여 로봇 매니퓰레이터 궤적 제어기를 구성하고 자 한다. 본 논문에서는 RBFN의 파라메터들을 적응제어기법을 이용하여 수학적으로 구하였고, 시스템의 안정도를 수학적으로 UUB를 만족한다는 것을 증명하였다. 그리고 수평다관절로봇 매니퓰레이터 궤적제어기에 적용하였다.

  • PDF

Application of Adaptive Neuro-Fuzzy Inference System for Interference Management in Heterogeneous Network

  • Palanisamy, Padmaloshani;Sivaraj, Nirmala
    • ETRI Journal
    • /
    • 제40권3호
    • /
    • pp.318-329
    • /
    • 2018
  • Femtocell (FC) technology envisaged as a cost-effective approach to attain better indoor coverage of mobile voice and data service. Deployment of FCs over macrocell forms a heterogeneous network. In urban areas, the key factor limits the successful deployment of FCs is inter-cell interference (ICI), which severely affects the performance of victim users. Autonomous FC transmission power setting is one straightforward way for coordinating ICI in the downlink. Application of intelligent control using soft computing techniques has not yet explored well for wireless networks. In this work, autonomous FC transmission power setting strategy using Adaptive Neuro Fuzzy Inference System is proposed. The main advantage of the proposed method is zero signaling overhead, reduced computational complexity and bare minimum delay in performing power setting of FC base station because only the periodic channel measurement reports fed back by the user equipment are needed. System level simulation results validate the effectiveness of the proposed method by providing much better throughput, even under high interference activation scenario and cell edge users can be prevented from going outage.

Adaptive Fuzzy Neuro Controller for Speed Control of Induction Motor

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.9-15
    • /
    • 2012
  • This paper is proposed the adaptive fuzzy neuro controller(AFNC) for high performance of induction motor drive. The design of this algorithm based on the AFNC that is implemented using fuzzy controller(FC) and neural network(NN). This controller uses fuzzy rule as training patterns of a NN. Also, this controller adjusts the weights between the neurons of NN to minimize the error between the command output and the actual output using the back-propagation method. The control performance of the AFNC is evaluated by analysis in various operating conditions. The results of analysis prove that the proposed control system has high performance and robustness to parameter variation, and steady-state accuracy and transient response.

인공지능망과 뉴로퍼지 모델을 이용한 주거건물 냉난방 시스템 조절 로직 및 예비 성능 시험 (Development of ANN- and ANFIS-based Control Logics for Heating and Cooling Systems in Residential Buildings and Their Performance Tests)

  • 문진우
    • 한국주거학회논문집
    • /
    • 제22권3호
    • /
    • pp.113-122
    • /
    • 2011
  • This study aimed to develop AI- (Artificial Intelligence) based thermal control logics and test their performance for identifying the optimal thermal control method in buildings. For this objective, a conventional Two-Position On/Off logic and two AI-based variable logics, which applied ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System), have developed. Performance of each logic was tested in a typical two-story residential building in U.S.A. using the computer simulation incorporating MATLAB and IBPT (International Building Physics Toolbox). In the analysis of the test results, AI-based control logic presented the advanced thermal comfort with stability compared to the conventional logic while they did not show significant energy saving effects. In conclusion, the predictive and adaptive AI-based control logics have a potential to maintain interior air temperature more comfortably, and the findings in this study could be a solid foundation for identifying the optimal thermal control method in buildings.

페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발 (Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system)

  • 김성호;이성룡;강정규
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF