• Title/Summary/Keyword: Adaptive quantization

Search Result 206, Processing Time 0.023 seconds

A Quantization-adaptive Watermarking Algorithm to Protect MPEG Moving Picture Contents (MPEG 동영상 컨텐츠 보호를 위한 양자화-적응적 워터마킹 알고리즘)

  • Kim Joo-Hyuk;Choi Hyun-Jun;Seo Young-Ho;Kim Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.149-158
    • /
    • 2005
  • This paper proposed a blind watermarking method for video contents which satisfies both the invisibility and the robustness to attacks to prohibit counterfeiting, modification, illegal usage and illegal re-production of video contents. This watermarking algorithm targets MPEG compression system and was designed to control the amount of watermarking to be inserted according to the adaptive quantization scale code to follow the adaptive quantization of the compression system. The inserting positions of the watermark were chosen by considering the frequency property of an image and horizontal, vertical and diagonal property of a $8{\times}8$ image block. Also the amount of watermarking for each watermark bit was decided by considering the quantization step. This algorithm was implemented by C++ and experimented for invisibility and robustness with MPEG-2 system. The experiment results showed that the method satisfied enough the invisibility of the inserted watermark and robustness against attacks. For the general attacks, the error rate of the extracted watermark was less than $10\%$, which is enough in robustness against the attacks. Therefore, this algorithm is expected to be used effectively as a part in many MPEG systems for real-time watermarking, especially in the sensitive applications to the network environments.

Postprocessing Method for Quantization Noise Reduction Using Block Classification and Adaptive Filtering (블록 분류와 적응적 필터링을 이용한 후처리에서의 양자화 잡음 제거 기법)

  • 이석환;권성근;이종원;이승진;이건일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.66-69
    • /
    • 2000
  • In this paper, we proposed a postprocessing algorithm for quantization effects reduction in block coded images using the block classification and adaptive filtering. The proposed method consists of classification, adaptive inter-block filtering, and intra-block filtering. First, each block is classified into one of seven classes based on the characteristics of 8${\times}$8 DCT coefficients. Then each block boundary is filtered by adaptive inter-block filters according to the block classification. Finally for blocks which are classified into edge block, intra-block filtering is peformed. Experimental results show that the proposed method gives better results than the conventional methods from both a subjective and an objective viewpoint.

  • PDF

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.

New Adaptive Compandor for LTE Signal Compression Based on Spline Approximations

  • Velimirovic, Lazar Zoran;Maric, Svetislav
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.463-468
    • /
    • 2016
  • With the constant increase in network traffic, wireless operators are finding it more challenging to keep network hardware costs to a minimum. At the same time, the energy cost associated with operating a network has increased proportionally. Therefore, the search for higher network capacity is simultaneously accompanied by the search for a cost-efficient network deployment. In this paper, we show that a saving in transmitted signal energy can be achieved at the signal design level by deploying very specific signal processing techniques. Using an orthogonal frequency-division multiplexing signal for Long-Term Evolution networks as an example, we utilize a novel non-uniform companding quantizer to save a transmitted signal energy. Our results show that by using non-uniform quantization it is possible to further optimize 4G wireless networks.

Cardio-Angiographic Sequence Coding Using Neural Network Adaptive Vector Quantization (신격회로망 적응 VQ를 이용한 심장 조영상 부호화)

  • 주창희;최종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.374-381
    • /
    • 1991
  • As a diagnostic image of hospitl, the utilization of digital image is steadily increasing. Image coding is indispensable for storing and compressing an enormous amount of diagnostic images economically and effectively. In this paper adaptive two stage vector quantization based on Kohonen's neural network for the compression of cardioangiography among typical angiography of radiographic image sequences is presented and the performance of the coding scheme is compare and gone over. In an attempt to exploit the known characteristics of changes in cardioangiography, relatively large blocks of image are quantized in the first stage and in the next stage the bloks subdivided by the threshold of quantization error are vector quantized employing the neural network of frequency sensitive competitive learning. The scheme is employed because the change produced in cardioangiography is due to such two types of motion as a heart itself and body motion, and a contrast dye material injected. Computer simulation shows that the good reproduction of images can be obtained at a bit rate of 0.78 bits/pixel.

  • PDF

A Macroblock-Layer Rate Control with Adaptive Quantization Parameter Decision and Header Bits Length Estimation (적응적 양자화 파라미터 결정과 헤더 비트량 예측을 통한 매크로블록 단위 비트율 제어)

  • Kim, Se-Ho;Suh, Jae-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.200-208
    • /
    • 2009
  • A macroblock layer rate control for H.264/AVC has the problem that allocated target bits for current frame occasionally are exhausted too fast due to inadequate quantization parameter assignment. In this case, the maximum permissible quantization parameter is used to encode for remaining macroblocks and it leads to degradation of the visual quality. In addition, the header bits length estimation algorithm used for quantization parameter assignment takes the average header bits length for the encoded macroblocks of the previous frame and the current frame. Therefore, it generates a big mismatch between the actually generated header bits length and the estimated header bits length. In this paper, we propose adaptive quantization parameter decision method to prevent early exhausting target bits during encoding the current frame by considering the number of macroblocks that have negative targets bits in previous frame and the improved header bits length estimation scheme for accurate quantization parameter decision.

Low-Complexity MIMO Detection Algorithm with Adaptive Interference Mitigation in DL MU-MIMO Systems with Quantization Error

  • Park, Jangyong;Kim, Minjoon;Kim, Hyunsub;Jung, Yunho;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.210-217
    • /
    • 2016
  • In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfect precoding matrix caused by quantization error of the CSI feedback, the station receives the desired signal as well as the residual interference signal. Therefore, a complexMIMO detection algorithm with interference mitigation is required for mitigating the residual interference. To reduce the computational complexity, we propose a MIMO detection algorithm with adaptive interference mitigation. The proposed algorithm adaptively mitigates the residual interference by using the maximum likelihood detection (MLD) error criterion (MEC). We derive a theoretical MEC by using the MLD error condition and a practical MEC by approximating the theoretical MEC. In conclusion, the proposed algorithm adaptively performs interference mitigation when satisfying the practical MEC. Simulation results show that the proposed algorithm reduces the computational complexity and has the same performance, compared to the generalized sphere decoder, which always performs interference mitigation.

A Study on the Fast Search Algorithm for Vector Quantization (벡터 양자화를 위한 고속 탐색 알고리듬에 관한 연구)

  • 지상현;김용석;이남일;강상원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2003
  • In this paper. we propose a fast search algorithm for nearest neighbor vector quantization (NNVQ). The proposed algorithm rejects those codewords which can not be the nearest codeword and reduces the search range of codebook. Hence it reduces computational time and complexity in encoding process, while it provides the same SD performance as the conventional full search algorithm. We apply the proposed algorithm to the adaptive multi-rate (AMR) speech coder and a general vector quantizer designed by LBG. algorithm. Simulation results show effectiveness of the proposed algorithm.

On the Performances of Block Adaptive Filters Using Fermat Number Transform

  • Min, Byeong-Gi
    • ETRI Journal
    • /
    • v.4 no.3
    • /
    • pp.18-29
    • /
    • 1982
  • In a block adaptive filtering procedure, the filter coefficients are adjusted once per each output block while maintaining performance comparable to that of widely used LMS adaptive filtering in which the filter coefficients are adjusted once per each output data sample. An efficient implementation of block adaptive filter is possible by means of discrete transform technique which has cyclic convolution property and fast algorithms. In this paper, the block adaptive filtering using Fermat Number Transform (FNT) is investigated to exploit the computational efficiency and less quantization effect on the performance compared with finite precision FFT realization. And this has been verified by computer simulation for several applications including adaptive channel equalizer and system identification.

  • PDF

Adaptive subband vector quantization using motion vector (움직임 벡터를 이용한 적응적 부대역 벡터 양자화)

  • 이성학;이법기;이경환;김덕규
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.677-680
    • /
    • 1998
  • In this paper, we proposed a lwo bit rate subband coding with adaptive vector quantization using the correlation between motion vector and block energy in subband. In this method, the difference between the input signal and the motion compensated interframe prediction signal is decomposed into several narrow bands using quadrature mirror filter (QMF) structure. The subband signals are then quantized by adaptive vector quantizers. In the codebook generating process, each classified region closer to the block value in the same region after the classification of region by the magnitude of motion vector and the variance values of subband block. Because codebook is genrated considering energy distribution of each region classified by motion vector and variance of subband block, this technique gives a very good visual quality at low bit rate coding.

  • PDF