• Title/Summary/Keyword: Adaptive plasticity

Search Result 46, Processing Time 0.021 seconds

Finite Element Simulation of Sheet Metal Forming by Using Non-parametric Tool Description with Locally Refined Patches (국소 분할된 패치를 갖는 비매개변수 금형묘사법을 이용한 3차원 박판성형공정 시뮬 레이션)

  • 윤정환;양동열;유동진
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • An improved nonparametric tool description based on successive refined nonparametric patches is proposed and the related criterion for refinement is also discussed. In the proposed scheme any required order of tool surface conformity can be achieved by employing successive refinements according to the suggested criterion. By using the suggested adaptive tool refinement technique based on the nonparametric patch tool description the locally refined nonparametric tool surface with economic memory size and sufficient accuracy as well as with favorable characteristics for contact treatment can be obtained directly from the parametric patch related with commercial CAD system. Computation is carried out for a chosen complex sheet forming example of an actual autobody panel in order to verify the validity and the efficiency of the developed tool surface description.

  • PDF

An Effective Mesh Smoothing Technique for the Mesh Constructed by the Mesh Compression Technique (격자압축법을 이용하여 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.340-347
    • /
    • 2003
  • In the rigid-plastic finite element simulation of hot forging processes using hexahedral mesh, remeshing of a flash is important for design and control of the process to obtain desirable defect-free products. The mesh compression method is a remeshing technique which enables the construction of an effective hexahedral mesh in the flash. However, because the mesh is distorted during the compression procedure of the mesh compression method, when it is used in resuming the analysis, it causes discretization error and decreases the conversance rate. Therefore, mesh smoothing is necessary to improve the mesh quality. In this study, several geometric mesh smoothing techniques and optimization techniques are introduced and modified to improve mesh quality. Then, the most adaptive technique is recommended for the mesh compression method.

Finite Element Springback Analysis of Vertically-Walled Auto-Body Part (수직벽을 가진 자동차 부품 성형공정의 스프링백 유한요소 해석)

  • 이두환;윤치상;신철수;조원석;구본영;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.574-581
    • /
    • 2000
  • A vertically-walled auto-body part is one of the most difficult stamping parts because of angle change, wall curl, and twisting of the blank after springback as well as fracture and wrinkle. In this study, computational simulations of the vertically-walled auto-body part are carried out focusing on angle change, wall curl, and twisting after springback. Binderwrap blank shape is used in forming analysis for precise initial contacts between punch and blank. An adaptive mesh method is used in springback analysis for precise calculation of bending moments. In springback analysis, the differences of 2 and 3 dimensional analysis are compared and the effects of blank holdig force and friction coefficient are evaluated. In order to verify the validity of simulation results, they are compared with measured ones. The predicted thickness distribution and formed shape are agreed well with those of the measurement. The Predicted springback amount is less than that of the measurement.

  • PDF

Estimation of pattern classification vigilance parameter using neural network

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.95-97
    • /
    • 2004
  • This paper estimates Adaptive Resonance Theory 1(ART1) as a vigilance parameter of pattern clustering algorithm. Inherent characteristics of the model are analyzed. In particular the vigilance parameter ${\rho}$ and its role in classification of patterns is examined. Our estimates show that the vigilance parameter as designed originally does not necessarily increase the number of categories with its value but can decrease also. This is against the claim of solving the stability-plasticity dilemma. However, we have proposed a modified vigilance parameter estimate criterion which takes into account the problem of subset and superset patterns and stably categorizes arbitrarily many input patterns in one list presentation when the vigilance parameter is closer to one.

  • PDF

Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization

  • Gap Ryol Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.4.1-4.15
    • /
    • 2023
  • Th cells, which orchestrate immune responses to various pathogens, differentiate from naive CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.

Online Automatic Gauge Controller Tuning Method by using Neuro-Fuzzy Model in a Hot Rolling Plant

  • Choi, Sung-Hoo;Lee, Young-Kow;Kim, Sang-Woo;Hong, Sung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1539-1544
    • /
    • 2005
  • The gauge control of the fishing mill is very important because more and more accurately sized hot rolled coils are demanded by customers recently. Because the mill constant and the plasticity coefficient vary with the specifications of the mill, the classification of steel, the strip width, the strip thickness and the slab temperature, the variation of these parameters should be considered in the automatic gauge control system(AGC). Generally, the AGC gain is used to minimize the effect of the uncertain parameters. In a practical field, operators set the AGC gain as a constant value calculated by FSU (Finishing-mill Set-Up model) and it is not changed during the operating time. In this paper, the thickness data signals that occupy different frequency bands are respectively extracted by adaptive filters and then the main cause of the thickness variation is analyzed. Additionally, the AGC gain is adaptively tuned to reduce this variation using the online tuning model. Especially ANFIS(Adaptive-Neuro-based Fuzzy Interface System) which unifies both fuzzy logics and neural networks, is used for this gain adjustment system because fuzzy logics use the professionals' experiences about the uncertainty and the nonlinearity of the system. Simulation is performed by using POSCO's data and the results show that proposed on-line gain adjustment algorithm has a good performance.

  • PDF

Intraspecific Variation in Leaf Life Span for the Semi-evergreen Liana Akebia trifoliata is Caused by Both Seasonal and Aseasonal Factors in a Temperate Forest

  • Kohei, Koyama;Kikuzawa, Kihachiro
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.207-211
    • /
    • 2008
  • We investigated the leaf demography of a temperate woody liana, Akebia trifoliata, in a temperate forest in Japan, Akebia is semi-evergreen: some leaves are shed before winter, while others remain through the winter. Previous studies of semi-evergreen species found that variation in leaf life span was caused by variation in the timing of leaf emergence, Leaves that appeared just before winter over-wintered, while leaves appearing earlier were shed, However, it is unclear whether leaves of the same cohort (i.e., leaves that appear at the same time within a single site) show variation in life span under the effect of strong seasonality. To separate variation in life span among the leaves in each cohort from variation among cohorts, we propose a new method - the single leaf diagram, which shows the emergence and death of each leaf. Using single leaf diagrams, our study revealed that Akebia leaves within a cohort showed substantial variation in life span, with some over-wintering and some not. In addition, leaves on small ramets in the understory showed great variation in life span, while leaves on large ramets, which typically reach higher positions in the forest canopy, have shorter lives, As a result, small ramets were semi-evergreen, whereas large ramets were deciduous, The longer lives of leaves on small ramets can be interpreted as a shade-adaptive strategy in understory plants.

Local protein synthesis in neuronal axons: why and how we study

  • Kim, Eunjin;Jung, Hosung
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.139-146
    • /
    • 2015
  • Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expression solely by translational control. Different stimuli to axons, such as guidance cues, growth factors, and nerve injury, promote translation of selective mRNAs, a process required for the axon's ability to respond to these cues. One of the critical questions in the field of axonal protein synthesis is how mRNA-specific local translation is regulated by extracellular cues. Here, we review current experimental techniques that can be used to answer this question. Furthermore, we discuss how new technologies can help us understand what biological processes are regulated by axonal protein synthesis in vivo.

Development of Profile Design Method Based on Longitudinal Strain for Flexible Roll Forming Process (가변 롤 성형 공정시 길이방향 변형률에 근거한 제품 형상 설계 기술 개발)

  • Joo, B.D.;Han, S.W.;Shin, S.G.R.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.401-406
    • /
    • 2013
  • The use of roll-formed products increases every year due to its advantages, such as high production rates, reduced tooling cost and improved quality. However, till now, it is limited to part profiles with constant cross section. In recent years, the flexible roll forming process, which allows variable cross sections of profiles by adaptive roll stands, was developed. In this study, an attempt to optimize profile design for the flexible roll forming process was performed. An equation that predicts the longitudinal strain for part geometries with variable cross-sections was proposed. The relationship between geometrical parameters and the longitudinal strain was analyzed and investigations on the optimal profile design were performed. Experiments were conducted with a lab-scale roll forming machine to validate the proposed equation. The results show that the profile design method proposed in this study is feasible and parts with variable cross sections can be successfully fabricated with the flexible roll forming process.

Variation of embryonic diapause induction in bivoltine silkworm Bombyx mori L (Lepidoptera: Bombycidae) under controlled conditions

  • Rudramuni, Kiran;Kumar Neelaboina, Bharath;Shivkumar, Shivkumar;Ahmad, Mir Nisar;Chowdhury, Sukhen Roy
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.2
    • /
    • pp.37-44
    • /
    • 2021
  • Mulberry silkworm is classified into uni, bi and multivoltine based on the frequency of diapause incidence. The variation in the incidence of diapause in bivoltine silkworm provides a unique opportunity to study the process of evolution of adaptive plasticity towards seasonal variations. The diapause expression in bivoltine silkworm is highly variable and is determined by environmental factors experienced by the maternal generation. Diapause in natural populations is functionally associated with the overwintering mechanism that facilitates survival in harsh winter conditions. In contrast, under standard commercial rearing conditions, the domesticated bivoltine silkworm is known to enter diapause in every generation. This paper presents a short review of the literature dealing with the role of temperature, photoperiod, diapause hormone and its receptor in diapause induction. Also, we briefly review the incidence of non-diapause eggs in bivoltine silkworm under controlled conditions.