DOI QR코드

DOI QR Code

Variation of embryonic diapause induction in bivoltine silkworm Bombyx mori L (Lepidoptera: Bombycidae) under controlled conditions

  • Rudramuni, Kiran (Silkworm Improvement Section, Central Sericultural Research and Training Institute, Central Silk Board) ;
  • Kumar Neelaboina, Bharath (Silkworm Improvement Section, Central Sericultural Research and Training Institute, Central Silk Board) ;
  • Shivkumar, Shivkumar (Silkworm Improvement Section, Central Sericultural Research and Training Institute, Central Silk Board) ;
  • Ahmad, Mir Nisar (Silkworm Improvement Section, Central Sericultural Research and Training Institute, Central Silk Board) ;
  • Chowdhury, Sukhen Roy (Silkworm Improvement Section, Central Sericultural Research and Training Institute, Central Silk Board)
  • 투고 : 2021.11.29
  • 심사 : 2021.12.27
  • 발행 : 2021.12.31

초록

Mulberry silkworm is classified into uni, bi and multivoltine based on the frequency of diapause incidence. The variation in the incidence of diapause in bivoltine silkworm provides a unique opportunity to study the process of evolution of adaptive plasticity towards seasonal variations. The diapause expression in bivoltine silkworm is highly variable and is determined by environmental factors experienced by the maternal generation. Diapause in natural populations is functionally associated with the overwintering mechanism that facilitates survival in harsh winter conditions. In contrast, under standard commercial rearing conditions, the domesticated bivoltine silkworm is known to enter diapause in every generation. This paper presents a short review of the literature dealing with the role of temperature, photoperiod, diapause hormone and its receptor in diapause induction. Also, we briefly review the incidence of non-diapause eggs in bivoltine silkworm under controlled conditions.

키워드

참고문헌

  1. Abraham EG, Nagaraju J, Datta RK (1992) Biochemical studies of amylases in the silkworm, Bombyx mori L.: comparative analysis in diapausing and nondiapausing strains. Insect Biochem Mol Biol 22(8), 867-873. https://doi.org/10.1016/0965-1748(92)90113-S
  2. Akitomo S, Egi Y, Nakamura Y, Suetsugu Y, Oishi K, Sakamoto K (2017) Genome-wide microarray screening for Bombyx mori genes related to transmitting the determination outcome of whether to produce diapause or nondiapause eggs. Insect sci 24(2), 187-193. https://doi.org/10.1111/1744-7917.12297
  3. Aswath SK (2005) Inheritance of voltinism and moultinism. In: Silkworm breeding and genetics. Basavaraja HK, Aswath SK, Suresh Kumar N, Mal Reddy, Kalpana GV (eds), Central Silk Board, Ministry of textiles, Govt. of India, Madivala, Bangalore, India.
  4. Chauhan TPS, Tayal MK (2017) Mulberry sericulture. In: Industrial Entomology. Omkar (ed), p. 197, Springer, Singapore.
  5. Chino H (1957) Carbohydrate metabolism in diapause egg of the silkworm, Bombyx mori. I. Diapause and the change of glycogen content. Embryologia 3, 295-316. https://doi.org/10.1111/j.1440-169X.1957.tb00077.x
  6. Chino H (1958) Carbohydrate metabolism in the diapausing egg of the silkworm, Bombyx mori. II. Conversion of glycogen into sorbitol and glycerol during diapause. J Insect Physiol 2, 1-12. https://doi.org/10.1016/0022-1910(58)90024-6
  7. Coulon M (1988) Comparative changes of ecdysteroid content in Bombyx mori eggs in diapausing and non-diapausing development. Comp Biochem Physiol Mol Integr Physiol 89(3), 503-509. https://doi.org/10.1016/0300-9629(88)91064-X
  8. Coulon M (1984) Variations of ecdysteroid rates of Bombyx mori egg and embryo according to the type of diapausing or non-diapausing egg. Sericologia 24, 183-203.
  9. Coulon M (1967) Les 6tapes de l'embryogen~se normale chez Bombyx mori. Bull Soc Zool Fr 92, 757-766.
  10. Cui WZ, Qiu JF, Dai TM, Chen Z, Li JL, Liu K, et al. (2021) Circadian clock gene period contributes to diapause via GABAeric-diapause hormone pathway in Bombyx mori. Biology, 10(9), 842. https://doi.org/10.3390/biology10090842
  11. Denlinger DL, Yocum GD, Rinehart JP (2012) Hormonal control of diapause. In: Insect Endocrinology. Gilbert LI (ed), pp. 430-463, Academic Press, San Diego.
  12. Dorel C, Coulon M (1988) Regulation of gene expression in prediapausing embryos of the silkworm, Bombyx mori: pattern of protein synthesis. Cell Differ 23(1-2), 87-92. https://doi.org/10.1016/0045-6039(88)90040-1
  13. Egi Y, Akitomo S, Fujii T, Banno Y, Sakamoto K (2014) Silkworm strains that can be clearly destined towards either embryonic diapause or direct development by adjusting a single ambient parameter during the preceding generation. Entomol Sci 17, 396-399. https://doi.org/10.1111/ens.12073
  14. Fan L, Lin J, Zhong Y, Liu J (2013) Shotgun proteomic analysis on the diapause and non-diapause eggs of domesticated silkworm Bombyx mori. PLoS One 8(4), e60386. https://doi.org/10.1371/journal.pone.0060386
  15. Fukuda S (1953) Determination of voltinism in the univoltine silkworm. Proc Jpn Acad 29(7), 381-384. https://doi.org/10.2183/pjab1945.29.381
  16. Fukuda S, Takeuchi S (1967) Studies on the diapause factor-producing cells in the suboesophageal ganglion of the silkworm, Bombyx mori L. Embryologia 9(4), 333-353. https://doi.org/10.1111/j.1440-169X.1967.tb00234.x
  17. Gong C, Wenhui Zeng, Tianyang Zhang, Rongpeng Liu, Yao Ou, Junwen Ai, et al. (2017) Effects of transgenic overexpression of diapause hormone and diapause hormone receptor genes on non-diapause silkworm. Transgenic research 26(6), 807-815. https://doi.org/10.1007/s11248-017-0045-y
  18. Hasegawa K (1957) The diapause hormone of the silkworm, Bombyx mori. Nature 179, 1300-1301. https://doi.org/10.1038/1791300b0
  19. Hasegawa K, Shimizu I (1987) In vivo and in vitro photoperiodic induction of diapause using isolated brain-suboesophageal ganglion complexes of the silkworm, Bombyx mori. J Insect Physiol 33, 959-966. https://doi.org/10.1016/0022-1910(87)90008-4
  20. Homma T, Watanabe K, Tsurumaru S, Kataoka H, Imai K, Kamba M, et al. (2006) G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem Biophys Res Commun 344(1), 386-393. https://doi.org/10.1016/j.bbrc.2006.03.085
  21. Horie Y, Kanda T, Mochida Y (2000) Sorbitol as an arrester of embryonic development in diapausing eggs of the silkworm, Bombyx mori. J Insect Physiol 46, 1009-1016. https://doi.org/10.1016/S0022-1910(99)00212-7
  22. Horike N, Sonobe H (1999) Ecdysone 20-monooxygenase in eggs of the silkworm, Bombyx mori: Enzymatic properties and developmental changes. Arch Insect Biochem Physiol 41(1), 9-17. https://doi.org/10.1002/(SICI)1520-6327(1999)41:1<9::AID-ARCH3>3.0.CO;2-G
  23. Ichikawa T (2003) Firing activities of neurosecretory cells producing diapause hormone and its related peptides in the female silkmoth, Bombyx mori. I. Labial cells. Zool Sci 20, 971-978. https://doi.org/10.2108/zsj.20.971
  24. Jayaswal KP (1994) Diapause phenomenon in tropical multivoltine races of Bombyx mori L. National Workshop on Silkworm Breeding, University of Mysore.
  25. Jiang T, Li J, Qian P, Xue P, Xu J, Chen Y, et al. (2019) The role of N6-methyladenosine modification on diapause in silkworm (Bombyx mori) strains that exhibit different voltinism. Mol Reprod Dev 86(12), 1981-1992. https://doi.org/10.1002/mrd.23283
  26. Jiang X, Yang J, Shen Z, Chen Y, Shi L, Zhou N (2016) Agonist mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through GqPLC-PKC-dependent cascade. Insect Biochem Mol Biol 75, 78-88. https://doi.org/10.1016/j.ibmb.2016.06.005
  27. Kamili AS, Masoodi MA (2000) Principles of Temperate Sericulture. Kalyani Publishers, Ludhiana.
  28. Kitagawa N, Shiomi K, Imai K, Niimi T, Yaginuma T, Yamashita O (2005) Establishment of a sandwich ELISA system to detect diapause hormone, and developmental profile of hormone levels in egg and subesophageal ganglion of the silkworm, Bombyx mori. Zoo Sci 22(2), 213-221. https://doi.org/10.2108/zsj.22.213
  29. Kitazawa T, Kanda T, Takami T (1963) Changes of mitotic activity in the silkworm eggs in relation to diapause. Bull Sericul Exp Sta 18, 283.
  30. Kogure M (1933) The influence of light and temperature on certain characters of the silkworm, Bombyx mori. J Dept of Agric, Kyushu Univ 4(1), 1-93.
  31. Kosegawa E, Reddy GV, Shimizu K, Okajima T (2000) Induction of non-diapause egg by dark and low temperature incubation in local variety of the silkworm, Bombyx mori. J Seric Sci Jpn 69(6), 369-375
  32. Makka T, Sonobe H (2000) Ecdysone metabolism in diapause eggs and non-diapause eggs of the silkworm, Bombyx mori. Zool Sci 17(1), 89-95. https://doi.org/10.2108/zsj.17.89
  33. Morita A, Niimi T, Yamashita O (2003) Physiological differentiation of DH-PBAN producing neurosecretory cells in the silkworm embryo. J Insect physiol 49, 1093-1102. https://doi.org/10.1016/j.jinsphys.2003.08.009
  34. Morohoshi S (1969) The control of growth and development in Bombyx mori. III. Proc Japan Acad 45(8), 739-744. https://doi.org/10.2183/pjab1945.45.739
  35. Muniraju E, Mundkur R (2018) Tracing of evolution in silkworm, Bombyx mori L., on the basis of molecular studies. In: Trends in Insect Molecular Biology and Biotechnology. Kumar D, Gong C (eds), pp. 67-84, Springer,.
  36. Murakami A (1987) Genetic studies on voltinism of a tropical race in Bombyx. Ann Rep Natl Inst Gen 37, 51-52.
  37. Murakami A and Ohtsuki Y (1989) Genetic studies on tropical races of silkworm (Bombyx mori) with special reference to crossbreeding strategy between tropical and temperate races 1. Genetic nature of the tropical multivoltine strain Cambodge. JARQ 23(1), 37-45.
  38. Nakagaki M, Takei R, Nagashima E, Yaginuma T (1991) Cell cycles in embryos of the silkworm, Bombyx mori: G2-arrest at diapause stage. Roux's Arch Dev Biol 200(4), 223-229. https://doi.org/10.1007/BF00361341
  39. Noguchi H, Hayakawa Y (2001) Dopamine is a key factor for the induction of egg diapause of the silkworm, Bombyx mori. Eur J Biochem 268, 774-780. https://doi.org/10.1046/j.1432-1327.2001.01933.x
  40. Otsuki R, Sato S (1997) Silkworm egg production (Translated from Japanese), pp. 18, Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi.
  41. Pearse V, Pearse J, Buchsbaum M, Buchsbaum R (1987) Living invertebrates, pp. 573-652 Blackwell Scientific Publications, Boston.
  42. Sasibhushan S, Ponnuvel KM, Vijayaprakash NB (2013) Changes in diapause related gene expression pattern during early embryonic development in HCl-treated eggs of bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae). Braz Arch Biol Technol 56(1), 1-10. https://doi.org/10.1590/S1516-89132013000100001
  43. Sato A, Sokabe T, Kashio M, Yasukochi Y, Tominaga M, Shiomi K (2014) Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc Natl Acad Sci 111(13), E1249-E1255.
  44. Sato Y, Oguchi M, Menjo N, Imai K, Saito H, Ikeda M, et al. (1993) Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc Natl Acad Sci 90(8), 3251-3255. https://doi.org/10.1073/pnas.90.8.3251
  45. Shimizu I (1982) Photoperiodic induction in the silkworm, Bombyx mori, reared on artificial diet: evidence for extraretinal photoreception. J Insect Physiol 28 (10), 841- 846. https://doi.org/10.1016/0022-1910(82)90096-8
  46. Shimizu I (1991) Voltinism and photoperiodism of the silkworm, Bombyx mori. Appl Entomol Zool 35, 83-91. https://doi.org/10.1303/jjaez.35.83
  47. Shimizu I, Aoki S, Ichikawa T (1997) Neuroendocrine control of diapause hormone secretion in the silkworm, Bombyx mori. J Insect Physiol 43, 1101-1109. https://doi.org/10.1016/S0022-1910(97)00083-8
  48. Shiomi K, Fujiwara Y, Yasukochi Y, Kajiura Z, Nagagaki M, Yaginuma T (2007) The Pitx homeobox gene in Bombyx mori: Regulation of DH-PBAN neuropeptide hormone gene expression. Mol Cell Neurosci 34, 209-218. https://doi.org/10.1016/j.mcn.2006.10.015
  49. Shiomi K, Takasu Y, Kunii M, Tsuchiya R, Mukaida M, Kobayashi M, et al. (2015) Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep 5, 15566. https://doi.org/10.1038/srep15566
  50. Singh T (2004) Principles and techniques of silkworm seed production. Discovery Publishing House. New Delhi, India.
  51. Sonobe H, Matsumoto A, Fukuzaki Y, Fujiwara S (1979) Carbohydrate metabolism and restricted oxygen supply in the eggs of the silkworm, Bombyx mori. J Insect Physiol 25(5), 381-388. https://doi.org/10.1016/0022-1910(79)90003-9
  52. Su ZH, Ikeda M, Sato Y, Imai K, Isobe M, Yamashita O (1994) Molecular characterization of ovary trehalase of the silkworm, Bombyx mori and its transcriptional activation by diapause hormone. Biochim Biophys Acta 1218, 366-374. https://doi.org/10.1016/0167-4781(94)90190-2
  53. Takesue S, Keino H, Endo K (1971) The morphological changes of the diapause and non-diapause eggs of silkworms, Bombyx mori L. Zool Magazine 80, 464-464.
  54. Takesue S, Keino H, Endo K (1976) Studies on the yolk granules of the silkworm, Bombyx mori L.: The morphology of diapause and non-diapause eggs during early developmental stages. Roux's Arch Dev Biol 180(2), 93-105. https://doi.org/10.1007/BF00848100
  55. Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford, UK: Oxford University Press.
  56. Tsurumaki J, Ishiguro J, Yamanaka A, Endo K (1999) Effects of photoperiod and temperature on seasonal morph development and diapause egg oviposition in a bivoltine race (Daizo) of the silkmoth, Bombyx mori L. J Insect Physiol 45(2), 101-106. https://doi.org/10.1016/S0022-1910(98)00039-0
  57. Subramanya G (1998) A new concept of voltinism breeding. In: Silkworm breeding. Reddy SG (ed), pp. 143-148, Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi.
  58. Watanabe K (1919) Studies on the voltinism in the silkworm, Bombyx mori-II. Inheritance of univoltine vs. tetravoltine. (In Japanese.) Bull Seric Exp Stn 4, 7-1806.
  59. Watanabe K (1924) Studies on the voltinism of the silkworm, Bombyx mori. Bull Seric Exp Stn 6, 411-455
  60. Watanabe K, Hull JJ, Niimi T, Imai K, Matsumoto S, Yaginuma T, et al. (2007) FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol Cell Endocrinol 273(1-2), 51-58. https://doi.org/10.1016/j.mce.2007.05.008
  61. Xu WH, Sato Y, Ikeda M, Yamashita O (1995a) Molecular characterization of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) of the silkworm, Bombyx mori and its distribution in some Insects, Biochim Biophys Acta 1261, 83-89. https://doi.org/10.1016/0167-4781(94)00238-X
  62. Xu WH, Sato Y, Ikeda M, Yamashita O (1995b) Stage-dependent and temperature controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuro peptide in the silkworm, Bombyx mori. J Biol Chem 270, 3804-3808. https://doi.org/10.1074/jbc.270.8.3804
  63. Yaginuma T, Kobayashi M, Yamashita O (1990a) Distinct effects of different low temperatures on the induction of NAD-sorbitol dehydrogenase activity in diapause eggs of the silkworm, Bombyx mori. J Comp Physiol B 160(3), 277-285. https://doi.org/10.1007/BF00302593
  64. Yaginuma T, Kobayashi M, Yamashita O (1990b) Effects of low temperatures on NAD-sorbitol dehydrogenase activity and morphogenesis in non-diapanse eggs of the silkworm, Bombyx mori. Comp Biochem Physiol Part B Comp Biochem 97(3), 495-506. https://doi.org/10.1016/0305-0491(90)90150-R
  65. Yaginuma T, Yamashita O (1978) Polyol metabolism related to diapause in Bombyx eggs: different behavior of sorbitol from glycerol during diapause and post-diapause. J Insect Physiol 24, 347-354. https://doi.org/10.1016/0022-1910(78)90074-4
  66. Yamashita O (1996) Diapause hormone of the silkworm, Bombyx mori: structure, gene expression and function. J Insect Physiol 42, 669-679. https://doi.org/10.1016/0022-1910(96)00003-0
  67. Yamashita O, Hasegawa K (1985) Embryonic diapause In: Comprehensive Insect Physiology Kerkut GA, Gilbert LI (eds), Biochemistry and Pharmacology, Vol 1, pp 407-434.
  68. Yamashita O, Hasegawa K, Seki M (1972) Effect of the diapause hormone on trehalase activity in pupal ovaries of the silkworm, Bombyx mori L. Gen Comp Endocrin 18, 515-523. https://doi.org/10.1016/0016-6480(72)90031-7
  69. Yamashita O, Suzuki K (1991) Roles of morphogenic hormone in embryonic diapause. In: Morphogenic Hormones in Arthropods. Gupta AP (ed), pp. 82-128, Rutger University Press, New Brunswick, New Jersey.
  70. Yamashita O, Yaginuma T (1991) Silkworm eggs at low temperatures: implications for sericulture. In: Insects at low temperature. Lee RE Jr, Denlinger DL (eds), pp. 424-445, Springer, Boston, MA.
  71. Yokoyama T, Saito S, Shimoda M, Kobayashi M, Takasu Y, Sezutsu H, et al. (2021) Comparisons in temperature and photoperiodic-dependent diapause induction between domestic and wild mulberry silkworms. Sci Rep 11(1), 1-9. https://doi.org/10.1038/s41598-020-79139-8
  72. Yoshitake N (1970) Origin and differentiation of the silkworm races. Jpn Agric Res Q 5, 38-43.
  73. Zhang TY, Kang L, Zhang ZF, Xu WH (2004) Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochem J 380, 255-263. https://doi.org/10.1042/BJ20031482
  74. Zhao LC, Hou YS, Sima YH (2014) Changes in glutathione redox cycle during diapause determination and termination in the bivoltine silkworm, Bombyx mori. Insect Sci 21(1), 39-46. https://doi.org/10.1111/1744-7917.12015