• 제목/요약/키워드: Adaptive neural network

Search Result 878, Processing Time 0.028 seconds

Sensorless Speed Control System Using a Neural Network

  • Huh Sung-Hoe;Lee Kyo-Beum;Kim Dong-Won;Choy Ick;Park Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.612-619
    • /
    • 2005
  • A robust adaptive speed sensorless induction motor direct torque control (DTC) using a neural network (NN) is presented in this paper. The inherent lumped uncertainties of the induction motor DTC system such as parametric uncertainty, external load disturbance and unmodeled dynamics are approximated by the NN. An additional robust control term is introduced to compensate for the reconstruction error. A control law and adaptive laws for the weights in the NN, as well as the bounding constant of the lumped uncertainties are established so that the whole closed-loop system is stable in the sense of Lyapunov. The effect of the speed estimation error is analyzed, and the stability proof of the control system is also proved. Experimental results as well as computer simulations are presented to show the validity and efficiency of the proposed system.

Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots (이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어)

  • Yoo Sung-Jin;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.

Design of Adaptive Fuzzy Logic Controller for Crane System (크레인 제어를 위한 적응 퍼지 제어기의 설계)

  • Lee, J.;Jeong, H.;Park, J.H.;Lee, H.;Hwang, G.;Mun, K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2714-2716
    • /
    • 2005
  • In this paper, we designed the adaptive fuzzy logic controller for crane system using neural network and real-coding genetic algorithm. The proposed algorithm show a good performance on convergence velocity and diversity of population among evolutionary computations. The weights of neural network is adaptively changed to tune the input/output gain of fuzzy logic controller. And the genetic algorithm was used to leam the feedforward neural network. As a result of computer simulation, the proposed adaptive fuzzy logic controller is superior to conventional controllers in moving and modifying the destination point.

  • PDF

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Noise Suppression Algorithm using Neural Network based Amplitude and Phase Spectrum (진폭 및 위상스펙트럼이 도입된 신경회로망에 의한 잡음억제 알고리즘)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.652-657
    • /
    • 2009
  • This paper proposes an adaptive noise suppression system based on human auditory model to enhance speech signal that is degraded by various background noises. The proposed system detects voiced, unvoiced and silence sections for each frame and implements an adaptive auditory process, then reduces the noise speech signal using a neural network including amplitude component and phase component. Based on measuring signal-to-noise ratios, experiments confirm that the proposed system is effective for speech signal that is degraded by various noises.

A Study on Adaptive-Tuning of PID Controller Using a Neural Network (신경망을 이용한 PID제어기의 적응동조에 관한 연구)

  • Kim, Sang-Won;Lee, Hong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.690-692
    • /
    • 1999
  • In this thesis, We implement the controller system only using the neural network to identify the plant characteristics with keeping the PID controller structure. The neural network has learned by the adaptive learning rates that has suggested by Chao-Chee Ku and the DBP algorithm. We proposed the on-line tuning algorithm about the unknown plant using the adaptive tuning technique. As a result of executing the parameters has tuned from the initial value to more suitable ones and the output of the Plant has improved and also it is appeared that the convergence is guaranteed.

  • PDF

Adaptive Identification Method of EDM Parameters Using Neural Network (신경망을 이용한 방전 조건의 적응적 결정 방법)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-49
    • /
    • 1998
  • Adaptive neural network approach is presented for determining Electrical Discharge Machining (EDM) parameters. Electrical Discharge Machining has been widely used with its capability of machining hard metals and tough shapes. In the past few years, EDM has been established in tool-room and large-scale production. However. in spite of it's wide application, an universal selection method of EDM parameters has not been established yet. No attempt has been tried before to suggest a logical method in determining essential machine parameters considering the machining rate and resulting surface roughness integrity. The paper presents a method, which is focusing on determining appropriate machining parameters. Depending on the electrode wear and surface roughness, an adaptive neural network is designed for providing suitable machining guideline.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

An Advanced Three-Phase Active Power Filter with Adaptive Neural Network Based Harmonic Current Detection Scheme

  • Rukonuzzaman, M.;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • An advanced active power filter for the compensation of instantaneous harmonic current components in nonlinear current load is presented in this paper. A novel signal processing technique using an adaptive neural network algorithm is applied for the detection of harmonic components generated by three-phase nonlinear current loads and this method can efficiently determine the instantaneous harmonic components in real time. The control strategy of the switching signals to compensate current harmonics of the three-phase inverter is also discussed and its switching signals are generated with the space voltage vector modulation scheme. The validity of this active filtering processing system to compensate current harmonics is substantiated on the basis of simulation results.

On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network (적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링)

  • Park, Chun-Seong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF