• Title/Summary/Keyword: Adaptive linear neuron

Search Result 7, Processing Time 0.019 seconds

Open Fault Diagnosis Using ANN of Adaptive-Linear-Neuron Structure for Three-Phase PWM Converter (Adaptive-Linear-Neuron 구조의 ANN을 이용한 3상 PWM 컨버터의 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.136-137
    • /
    • 2019
  • 본 논문에서는 ADALINE (Adaptive-Linear-Neuron) 구조의 ANN(Artificial Neural Network)을 이용한 3상 PWM 컨버터의 개방고장 진단 방법에 대해 제안한다. 3상 PMW 컨버터에서 스위치의 개방고장이 발생한 경우 보호회로에 의해 시스템이 중단되지 않으며, 개방고장으로 인한 상전류의 고조파와 직류 성분에 의해 주변 기기에 고장에 의한 파급효과가 나타날 수 있다. 이에 본 논문에서는 ADALINE을 이용하여 각 상의 THD(Total Harmonics Distortion)와 직류 성분 얻고 대소비교를 통해 개방고장이 발생한 스위치를 진단하는 방법에 대해 제안한다.

  • PDF

Learning Algorithm using a LVQ and ADALINE (LVQ와 ADALINE을 이용한 학습 알고리듬)

  • 윤석환;민준영;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.47-61
    • /
    • 1996
  • We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.

  • PDF

Adaptive Neural PLL for Grid-connected DFIG Synchronization

  • Bechouche, Ali;Abdeslam, Djaffar Ould;Otmane-Cherif, Tahar;Seddiki, Hamid
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.608-620
    • /
    • 2014
  • In this paper, an adaptive neural phase-locked loop (AN-PLL) based on adaptive linear neuron is proposed for grid-connected doubly fed induction generator (DFIG) synchronization. The proposed AN-PLL architecture comprises three stages, namely, the frequency of polluted and distorted grid voltages is tracked online; the grid voltages are filtered, and the voltage vector amplitude is detected; the phase angle is estimated. First, the AN-PLL architecture is implemented and applied to a real three-phase power supply. Thereafter, the performances and robustness of the new AN-PLL under voltage sag and two-phase faults are compared with those of conventional PLL. Finally, an application of the suggested AN-PLL in the grid-connected DFIG-decoupled control strategy is conducted. Experimental results prove the good performances of the new AN-PLL in grid-connected DFIG synchronization.

ADALINE Controller Using Fuzzy-Backpropagation Algorithm (퍼지-역전파 알고리즘을 이용한 ADALINE 제어기)

  • 강성호;정성부;김주웅;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.684-687
    • /
    • 2001
  • In this paper, we propose a ADALINE controller using fuzzy-backpropagation algorithm to adjust weight. In the proposed ADALINE controller, using fuzzy algorithm for traning neural network, controller make use of ADALINE due to simple and computing efficiency. And then it applies to servo-motor as an controlled process. And then it take a simulation for the position control, so the verify the usefulness of the proposed ADALINE controller.

  • PDF

Multiple Switches Open-Fault Diagnosis Using ANNs of Two-Step Structure for Three-Phase PWM Converters (Two-Step 구조의 인공신경망을 이용한 3상 PWM 컨버터의 다중 스위치 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.282-283
    • /
    • 2020
  • 3상 컨버터에서 스위치의 개방고장이 발생한 경우 고장 전류에 직류 및 고조파 성분이 발생할 수 있으며, 보호회로에 의한 고장 감지가 어려우므로 주변 기기에 2차 고장이 발생할 수 있다. 단일 및 이중 스위치 개방고장의 경우 21가지 고장 모드가 존재한다. 본 논문에서는 이러한 고장 모드를 진단하기 위해 정지 좌표계 d-q축 전류의 직류 및 고조파 성분을 활용하는 two-step 구조의 ANN(Artificial Neural Network)을 제안한다. 고장 시에 발생된 직류 및 고조파 성분 전류는 ADALINE(Adaptive-Linear Neuron)을 통해 얻는다. 고장 진단의 첫 번째 단계에서는 직류 성분을 기반으로 ANN을 이용하여 고장모드를 6개 영역으로 분류한다. 두 번째 단계에서는 6개의 각 영역에서 직류 성분과 전류의 THD(Total Harmonics Distortion)를 기반으로 ANN을 이용하여 개방고장이 발생한 스위치를 진단한다. 제안된 Two-step 방법으로 고장을 진단하므로써 간단한 구조로 ANN의 설계가 가능하다. 3.7kW급 3상 PWM 컨버터로 실험을 통해 제안된 방법의 효용성을 검증하였다.

  • PDF

Improved ADALINE Harmonics Extraction Algorithm for Boosting Performance of Photovoltaic Shunt Active Power Filter under Dynamic Operations

  • Mohd Zainuri, Muhammad Ammirrul Atiqi;Radzi, Mohd Amran Mohd;Soh, Azura Che;Mariun, Norman;Rahim, Nasrudin Abd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1714-1728
    • /
    • 2016
  • This paper presents improved harmonics extraction based on Adaptive Linear Neuron (ADALINE) algorithm for single phase photovoltaic (PV) shunt active power filter (SAPF). The proposed algorithm, named later as Improved ADALINE, contributes to better performance by removing cosine factor and sum of element that are considered as unnecessary features inside the existing algorithm, known as Modified Widrow-Hoff (W-H) ADALINE. A new updating technique, named as Fundamental Active Current, is introduced to replace the role of the weight factor inside the previous updating technique. For evaluation and comparison purposes, both proposed and existing algorithms have been developed. The PV SAPF with both algorithms was simulated in MATLAB-Simulink respectively, with and without operation or connection of PV. For hardware implementation, laboratory prototype has been developed and the proposed algorithm was programmed in TMS320F28335 DSP board. Steady state operation and three critical dynamic operations, which involve change of nonlinear loads, off-on operation between PV and SAPF, and change of irradiances, were carried out for performance evaluation. From the results and analysis, the Improved ADALINE algorithm shows the best performances with low total harmonic distortion, fast response time and high source power reduction. It performs well in both steady state and dynamic operations as compared to the Modified W-H ADALINE algorithm.

Improvement in Computation of Δ V10 Flicker Severity Index Using Intelligent Methods

  • Moallem, Payman;Zargari, Abolfazl;Kiyoumarsi, Arash
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.228-236
    • /
    • 2011
  • The ${\Delta}\;V_{10}$ or 10-Hz flicker index, as a common method of measurement of voltage flicker severity in power systems, requires a high computational cost and a large amount of memory. In this paper, for measuring the ${\Delta}\;V_{10}$ index, a new method based on the Adaline (adaptive linear neuron) system, the FFT (fast Fourier transform), and the PSO (particle swarm optimization) algorithm is proposed. In this method, for reducing the sampling frequency, calculations are carried out on the envelope of a power system voltage that contains a flicker component. Extracting the envelope of the voltage is implemented by the Adaline system. In addition, in order to increase the accuracy in computing the flicker components, the PSO algorithm is used for reducing the spectral leakage error in the FFT calculations. Therefore, the proposed method has a lower computational cost in FFT computation due to the use of a smaller sampling window. It also requires less memory since it uses the envelope of the power system voltage. Moreover, it shows more accuracy because the PSO algorithm is used in the determination of the flicker frequency and the corresponding amplitude. The sensitivity of the proposed method with respect to the main frequency drift is very low. The proposed algorithm is evaluated by simulations. The validity of the simulations is proven by the implementation of the algorithm with an ARM microcontroller-based digital system. Finally, its function is evaluated with real-time measurements.