• Title/Summary/Keyword: Adaptive learning

Search Result 1,003, Processing Time 0.029 seconds

Effectiveness of Adaptive Navigation System for Group Activity at the Wiki-based Collaborative Learning (Wiki 기반 협력학습에서 적응적 내비게이션 시스템이 그룹 활동에 미치는 효과)

  • Han, Hee-Seop;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • The latest several studies show that Wiki is a very efficient tools for collaborative learning in the distributed environments. Even though Wiki supports efficient knowledge sharing between group members, there are still some problems to be solved for collaborative learning. Since the structure of group contents becomes more complex and the links between pages are dynamically changed, each member of group has difficulties to perceive the changed contents and links on group pages. We designed the adaptive navigation system to guide individual browsing paths of each member through the calculating of friendship and the state of pages. At first we developed the relation model between member and each pages by the historical log that stored the change of pages and the activity of members, and then we implemented the adaptive navigation system using the model. Experimental results show that this adaptive system is very effective to share the group knowledge and to promote collaborative learning activities.

  • PDF

An Adaptive Vendor Managed Inventory Model Using Action-Reward Learning Method (행동-보상 학습 기법을 이용한 적응형 VMI 모형)

  • Kim Chang-Ouk;Baek Jun-Geol;Choi Jin-Sung;Kwon Ick-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.27-40
    • /
    • 2006
  • Today's customer demands in supply chains tend to change quickly, variously even in a short time Interval. The uncertainties of customer demands make it difficult for supply chains to achieve efficient inventory replenishment, resulting in loosing sales opportunity or keeping excessive chain wide inventories. Un this paper, we propose an adaptive vendor managed inventory (VMI) model for a two-echelon supply chain with non-stationary customer demands using the action-reward learning method. The Purpose of this model is to decrease the inventory cost adaptively. The control Parameter, a compensation factor, is designed to adaptively change as customer demand pattern changes. A simulation-based experiment was performed to compare the performance of the adaptive VMI model.

The Adaptive Congestion Control Using Neural Network in ATM network (ATM 망에서 뉴럴 네트워크를 이용한 적응 폭주제어)

  • Lee, Yong-Il;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.134-138
    • /
    • 1998
  • Because of the statistical fluctuations and the high 'time-variability' nature of the traffic, managing the resources of the network require highly dynamic techniques with minimal Intervention and reaction times, and adaptive and learning capabilities. The neural networks normalizes the ATM cell arrival rate and queue length and has the adaptive learning algorithm, and experimentally investigated the method to prevent the congestion generated in ATM networks.

  • PDF

Study of Adaptive Learning Control for Robot-Manipulator (로봇 매니퓰레이터의 적응학습제어에 관한 연구)

  • 최병현;국태용;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.396-400
    • /
    • 1996
  • It is prerequisite to apply dynamics controller to control robot manipulator required to perform fast and Precise motion. In this Paper, we Propose an adaptive 3earning control method for the dynamic control of a robot manipulator. The proposed control scheme is made up of PD controller in the feedback loop and the adaptive learning controller in the feedforward loop. This control scheme has the ability to estimate uncertain dynamic parameters included intrinsically in the system and to achieve the desired performance without the nasty matrix operation. The proposed method is applied to a SCARA robot and experimentally verified.

  • PDF

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

An Adaptive Tutoring System based on CAT using Item Response Theory and Dynamic Contents Providing (문항반응 이론에 의한 컴퓨터 적응적 평가와 동적 학습내용 구성에 기반한 적응형 고수 시스템)

  • Choi Sook-Young;Yang Hyung-Jeong;Baek Hyon-Ki
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.438-448
    • /
    • 2005
  • This paper proposes an adaptive tutoring system that provides learning materials dynamically according to the learners' teaming character and ability. Our system, in which a learning phase and a test phase are linked together, supports the personalized instruction-learning by providing the teaming materials by level in the learning phase according to the teaming ability estimated in the test phase. We design and implement a tutoring system consisted of an evaluation component and a learning component. An evaluation component uses a computerized adaptive test(CAT) based on item response theory to evaluate learners' ability while a learning component employs fuzzy level set theory so that teaming contents are provided to learners according to learners' level.

How Did South Korean Governments Respond during 2015 MERS Outbreak?: Application of the Adaptive Governance Framework

  • Kim, KyungWoo
    • Journal of Contemporary Eastern Asia
    • /
    • v.16 no.1
    • /
    • pp.69-81
    • /
    • 2017
  • This study examines how South Korean governments responded to the outbreak of Middle East Respiratory Syndrome Coronavirus (MERS) using the adaptive governance framework. As of November 24, 2015, the MERS outbreak in South Korea resulted in the quarantine of about 17,000 people, 186 cases confirmed, and a death of 38. Although the national government had overall responsibility for MERS response, there is no clear understanding of how the ministries, agencies, and subnational governments take an adaptive response to the public health crisis. The paper uses the adaptive governance framework to understand how South Korean governments respond to the unexpected event regarding the following aspects: responsiveness, public learning, scientific learning, and representativeness of the decision mechanisms. The framework helps understand how joint efforts of the national and subnational governments were coordinated to the unexpected conditions. The study highlights the importance of adaptive governance for an effective response to a public-health related extreme event.

The Robust Control of Robot Manipulator using Adaptive-Neuro Control Method (적응-뉴럴 제어 기법에 의한 로보트 매니퓰레이터의 견실 제어)

  • 차보남;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.262-266
    • /
    • 1995
  • This paper presents a new adaptive-neuro control scheme to control the velocity and position of SCARA robot with parameter uncertainties. The adaptive control of linear system found wiedly in many areas of control application. While techniques for the adaptive control of linear systems have been well-established in the literature, there are a few corresponding techniques for nonlinear systems. In this paper an attempt is made to present a newcontrol scheme for theadaptive control of ponlinear robot based on a feedforward neural network. The proposed approach incorporates a neuro controller used within a reinforcement learning framework, which reduces the problem to one of learning a stochastic approximation of an unknown average error surface Emphasis is focused on the fact that the adaptive-neuro controoler dose not need any input/output information about the controlled system. The simulation result illustrates the effectiveness of the proposed adaptive-neuro control scheme.

  • PDF

Hangul Recognition Using a Hierarchical Neural Network (계층구조 신경망을 이용한 한글 인식)

  • 최동혁;류성원;강현철;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.852-858
    • /
    • 1991
  • An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.

  • PDF

A DASH System Using the A3C-based Deep Reinforcement Learning (A3C 기반의 강화학습을 사용한 DASH 시스템)

  • Choi, Minje;Lim, Kyungshik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.