• 제목/요약/키워드: Adaptive immunity

검색결과 118건 처리시간 0.028초

Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection

  • Park, Sang June;Lee, Jong Soo;Kwon, Byungsuk;Cho, Hong Rae
    • 대한이식학회지
    • /
    • 제28권3호
    • /
    • pp.113-120
    • /
    • 2014
  • Two-signal models are useful in explaining various types of immune responses. In particular, secondary, so-called costimulatory, signals are critically required for the process of T-cell activation, survival, differentiation, and memory formation. Early studies in rodent models showed that targeting T-cell costimulatory pathways elicits immunological tolerance, providing a basis for development of costimulatory therapeutics in allograft rejection. However, as the classic definition of T-cell costimulation continues to evolve, simple blockade of costimulatory pathways has limitations in prevention of allograft rejection. Furthermore, functions of costimulatory molecules are much more diverse than initially anticipated and beyond T cells. In this mini-review, we will discuss CD137-CD137L bidirectional signals as examples showing that two-signals can be applicable to multiple phases of immune responses.

Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis

  • Yeon-Woo Kang;Subin Park;Kun-Joo Lee;Dain Moon;Young-Min Kim;Seung-Woo Lee
    • IMMUNE NETWORK
    • /
    • 제21권1호
    • /
    • pp.1.1-1.16
    • /
    • 2021
  • The emergence of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a significant health concern worldwide. Undoubtedly, a better understanding of the innate and adaptive immune responses against SARS-CoV-2 and its relationship with the coronavirus disease 2019 (COVID-19) pathogenesis will be the sole basis for developing and applying therapeutics. This review will summarize the published results that relate to innate immune responses against infections with human coronaviruses including SARS-CoV-1 and SARS-CoV-2 in both humans and animal models. The topics encompass the innate immune sensing of the virus to the dysregulation of various innate immune cells during infection and disease progression.

Dendritic Cell-based Immunotherapy for Rheumatoid Arthritis: from Bench to Bedside

  • Md. Selim Ahmed;Yong-Soo Bae
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.44-51
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen presenting cells, and play an important role in the induction of antigen-specific adaptive immunity. However, some DC populations are involved in immune regulation and immune tolerance. These DC populations are believed to take part in the control of immune exaggeration and immune disorder, and maintain immune homeostasis in the body. Tolerogenic DCs (tolDCs) can be generated in vitro by genetic or pharmacological modification or by controlling the maturation stages of cytokine-derived DCs. These tolDCs have been investigated for the treatment of rheumatoid arthritis (RA) in experimental animal models. In the last decade, several in vitro and in vivo approaches have been translated into clinical trials. As of 2015, three tolDC trials for RA are on the list of ClinicalTrial.gov (www.clinicaltrials.gov). Other trials for RA are in progress and will be listed soon. In this review, we discuss the evolution of tolDC-based immunotherapy for RA and its limitations and future prospects.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

대식세포주에서 베타-글루칸에 의한 염증성 사이토카인의 발현 (Expression of Inflammatory Cytokines by Beta-glucan in Macrophage Cell Line)

  • 김미정;유한욱;조계형;김하원
    • 약학회지
    • /
    • 제52권1호
    • /
    • pp.73-78
    • /
    • 2008
  • Immune system can protect host attacking from a variety of microorganism and virus through innate and adaptive immunities. The innate immune system can be activated by recognition of conserved carbohydrates on the cell surface of pathogen resulting in protection, immunity regulation and inflammation. Immunostimulating and anti-tumor ${\beta}$-glucan, major cell wall component of many fungi, could be recognized as pathogen associated molecular pattern (PAMP) by C-type lectin such as pathogen recognition receptor (PRR) of host innate immunity cells. In spite of many studies of basidiomycetes ${\beta}$-glucan on immunostimulation, little is known about the precise mechanism as molecular-level. Among C-type lectins, dectin-1 was cloned and reported as a ${\beta}$-glucan receptor. In this report, we demonstrated induction of cytokine gene transcription by Ganoderma lucidum ${\beta}$-glucan in the absence or presence of lipopolysaccharide (LPS) by RT-PCR analysis. The expression of murine dectin-1 (MD-1) on RAW264.7 macrophage by RT-PCR showing both the full length, 757 bp $(MD-1{\alpha})$ and alternative spliced form, 620 bp $(MD-1{\beta})$. Both $MD-1{\alpha}$ and $MD-1{\beta}$ mRNAs were induced by ${\beta $-glucan both in the absence and presence of LPS. To explore expression of inflammatory cytokines by ${\beta}$-glucan, RAW264.7 cells were treated with ${\beta}$-glucan for 12 hours. As a result, the expressions of IL-1 IL-6, IL-l0 and $TNF-{\alpha}$ were increased by ${\beta}$-glucan treatment in a dose-dependent fashion. From these results, ${\beta}$-glucan induced transcriptions of dectin-1 and immune activating cytokine genes, indicating induction of immune allertness by expressing dectin-1 and secreting inflammatory cytokines.

Expression of Toll-like Receptors 2 and 4 and Immunoglobulins in Children wih Recurrent Otitis Media with Effusion

  • Cha, Chang-Il;Lee, Young-Chan;Park, Dong-Choon;Kim, Young-Il;Lee, Jin-Woo;Yeo, Seung-Geun
    • IMMUNE NETWORK
    • /
    • 제8권2호
    • /
    • pp.59-65
    • /
    • 2008
  • Background: Toll-like receptors (TLRs) detect microbial infection and can directly induce innate host defense responses, which are thought to play critical roles in protecting the tubotympanum from infection. However, little is known about the relationship between TLRs, which are related to innate immunity, and immunoglobulins, which are related to adaptive immunity, in recurrent otitis media with effusion (OME). We therefore investigated the expression of TLR2 and TLR4 and immunoglobulin in children with OME. Methods: The study population consisted of 72 children with OME, 31 with more than 4 episodes in 12 months or more than 3 episodes in 6 months (otitis-prone group), and 41 with fewer than 3 episodes in 12 months (non-otitis prone group). The expression in middle ear effusion of TLR2 and TLR4 mRNA, as determined by Real time- -polymerase chain reaction (RT-PCR), and the concentrations of IgG, IgA, and IgM, as determined by Enzyme-linked immunosorbent assay(ELISA), were compared between the two groups. Results: Expression of TLR2 and TLR4 mRNA was lower in the otitis prone than in the non-otitis prone group, but the difference was not statistically significant (p>0.05). Between group differences in the concentrations of IgG, IgA and IgM in effusion fluid were not significant (p>0.05), and there were no correlations between immunoglobulin concentration and the expression of TLR2 and TLR4. Conclusion: Although there was a trend toward lower expression of TLR2 and TLR4 in the otitis-prone group, the differences, and those in immunoglobulin concentration, did not differ significantly between the otitis-prone and non-prone groups.

Common and differential effects of docosahexaenoic acid and eicosapentaenoic acid on helper T-cell responses and associated pathways

  • Lee, Jaeho;Choi, Yu Ri;Kim, Miso;Park, Jung Mi;Kang, Moonjong;Oh, Jaewon;Lee, Chan Joo;Park, Sungha;Kang, Seok-Min;Manabe, Ichiro;Ann, Soo-jin;Lee, Sang-Hak
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.278-283
    • /
    • 2021
  • Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.

꿀벌 꽃가루 열수 추출물의 수지상 세포 활성화 및 Th1 반응에 미치는 효과 (Effect of bee pollen extract on activation of dendritic cells and induction of Th1 immune response)

  • 조은지;김이은;변의홍
    • 한국식품과학회지
    • /
    • 제50권4호
    • /
    • pp.444-450
    • /
    • 2018
  • 본 연구는 꿀벌 꽃가루 추출물(BPW)의 면역 활성에 관하여 알아보기 위하여, 선천면역계의 대표적인 수지상세포와 후천면역계의 대표적인 비장세포에 BPW를 처리 하여 면역세포의 활성능을 관찰하였다. 수지상 세포에 BPW를 처리하여 세포 생존율, 산화질소(II)와 사이토카인($TNF-{\alpha}$, IL-6과 $IL-1{\beta}$) 분비능과 세포 표면분자를 관찰 하였다. 세포 생존율은 수지상 세포에 BPW를 처리하였을 때, 세포 독성을 일으키지 않았으며 주요 면역 활성 인자인 산화질소(II) 분비능을 관찰한 결과, 농도 의존적으로 증가하는 것을 확인하였다. 또한 사이토카인의 분비능을 관찰한 결과, $TNF-{\alpha}$, IL-6과 $IL-1{\beta}$의 함량이 농도 의존적으로 증가하는 것으로 관찰되었다. 또한 활성화된 면역세포의 세포 표면에서 발현되는 CD80과 CD86의 발현과 항원제시에 밀접한 관련이 있는 MHC class I, II의 발현이 유의적으로 증가하는 것으로 관찰되었다. 또한 후천면역에서 중요한 역할을 수행하는 면역 T 세포가 다량 분포하는 지라 세포를 분리하여 BPW를 처리 하였을 때 Th1 세포가 분비하는 사이토카인의 함량이 농도 의존적으로 증가되는 것으로 나타났다. 이러한 결과로 미루어 볼 때 BPW는 선천면역뿐만 아니라 후천면역에 관여하는 다양한 면역세포의 활성화에 직간접적으로 관여하는 것으로 사료된다.

종양 용해성 바이러스-암 치료에서의 새 시대 (Oncolytic Viruses - A New Era for Cancer Therapy)

  • 다니엘 가비르;이르빈 니요니지기에;강민재;김군도
    • 생명과학회지
    • /
    • 제29권7호
    • /
    • pp.824-835
    • /
    • 2019
  • 최근 수십 년 간 종양 용해성 바이러스(Oncolytic viruses; OV)는 암 치료제로서의 잠재성에 의해 광범위하게 연구되어왔다. 종양 용해성 바이러스는 두 가지의 독특한 장점을 가지고 있는데, 첫째로 암세포만을 특이적으로 감염시키고 사멸시킬 수 있다는 것이고, 두 번째로는 암이 진행되는 초기 단계에 숨어서 인식되지 않는 상태인 종양 관련 항원들을 인식하는 특정한 적응 면역을 활성화 시키는 것이다. 2015년에는 유전자 변형 종양 용해성 바이러스인 Talminogene laherparepvec (T-VEC)이 미국 식약청(FDA)의 승인을 받았으며, 현재는 다양한 종양 용해성 바이러스들이 단일로 사용되거나 기존의 암 치료 방법인 면역 치료법, 방사선 치료법, 화학 치료법과 함께 사용되어 임상 시험에서 활성이 연구되고 있다. 종양 용해성 바이러스 치료법의 효능은 항 종양 면역 활성과 항바이러스 반응의 균형이 어느 정도인가에 의해 조절되기 때문에, 획기적인 성과에도 불구하고 암 치료를 위한 종양 용해성 바이러스의 개발은 전달 방법, 바이러스를 인식하는 신체 내 항체 및 종양의 복잡성, 가변성, 반응성에 따른 항바이러스의 면역 유도와 같은 다양한 장애물을 극복하여야 하는 문제가 있다. 종양 내에 직접 종양 용해성 바이러스를 투여하는 방법은 눈에 띄는 부작용이 없이 고형 종양을 줄이는 것에 성공하였으나, 아쉽게도 뇌종양 같은 일부 종양에는 사용할 수 없고 전신 투여가 필요한 단점이 존재한다. 이러한 장애물들을 극복하기 위해서 종양 용해성 바이러스의 효능을 높이기 위한 형질 전환 유전자의 삽입 혹은 면역 조절 물질과 바이러스를 조합하는 등의 다양한 전략들이 개발되고 있다.

Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19

  • Rudi Alberts;Sze Chun Chan;Qian-Fang Meng;Shan He;Lang Rao;Xindong Liu;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • 제22권3호
    • /
    • pp.22.1-22.25
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.