• Title/Summary/Keyword: Adaptive front-lighting system

Search Result 8, Processing Time 0.029 seconds

Automotive Adaptive Front Lighting Requiring Only On/Off Modulation of Multi-array LEDs

  • Lee, Jun Ho;Byeon, Jina;Go, Dong Jin;Park, Jong Ryul
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.207-213
    • /
    • 2017
  • The Adaptive Front-lighting System (AFS) is a part of the active safety system, providing optimized vision to the driver during night time and other poor-sight conditions of the road by automatic adaptation of lighting to environmental and traffic conditions. Basically, an AFS provides four different modes of the passing beam as designated in an United Nations Economic Commission for Europe regulation (ECE324-R123): neutral state or country light (Class C), urban light (Class V), highway light (Class E), and adverse weather light (Class W). In this paper, we first present an optics design for an AFS system capable of producing the Class C/V/E/W patterns requiring only on/off modulation of multi-array LEDs with no need for any additional mechanical components. The AFS optics consists of two separated modules, cutoff and spread; the cutoff module lights a narrow central area with high luminous intensity, satisfying the cutoff regulation, and the spread module forms a wide spread beam of low luminous intensity. Each module consists of two major parts; the first converts a discretely positioned LED array into a full-filled area emitting light source plane, and the second projects the light source plane to a 25 m away target plane. With the combination of these two optics modules, the four beam patterns are formed by simple on/off modulation of multi-array LEDs. Then we report the development of a prototype that was demonstrated to provide the four beam patterns.

Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System (적응형 헤드 램프 컨트롤을 위한 야간 차량 인식)

  • Kim, Hyun-Koo;Jung, Ho-Youl;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

A Study on Adaptive Front-Lighting System based on Diffractive Optical Element (회절 광학 소자 기반 적응형 전조등 시스템 연구)

  • Seong-Uk Shin;Seung-Ho Park;Kyoung-Sun Yoo;Myeong-Jae Noh
    • Advanced Industrial SCIence
    • /
    • v.2 no.4
    • /
    • pp.28-35
    • /
    • 2023
  • In this paper, a diffractive optical element was designed to create lighting patterns that satisfy the requirements of adaptive headlight systems for normal road mode, highway mode, and wet road mode, and this was rendered into a GDSII stream format file.To verify the effectiveness of the light distribution formed by the diffractive optical elements and the realization of white light, simulations based on Field Tracing and Ray Tracing were conducted, confirming the satisfaction of position and luminance requirements at the transformation beam measurement points. Based on this research, it is anticipated that the implementation of adaptive headlights would be possible, enabling the reproduction of luminance contrast and the creation of a simple-structured adaptive headlight system.

A Study on the development of ECU for Adaptive Front-lighting System (Adaptive Front-lighting System용 ECU 개발에 관한 연구)

  • Kim, Gwan-Hyung;Kang, Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2078-2082
    • /
    • 2007
  • Recently, according to traffic accident statistics, traffic accidents occurring at night are as frequent as those during daytime, but their death rate is 1.5 times higher than that of daytime traffic accidents. This problem originates that the insufficient range of vision security of a driver causes the inappropriate accident confrontation. Therefore, in this paper, a microcontroller-based digital control method for the superior performance in headlight system is presented for optimal control that can adapt complex transient state, steady state and various environments. Specially in vehicles# headlight, its fundamental purpose is to implement the artificial headlight system which automatically controls the lighting patterns most adaptive to driving, road and weather conditions. Therefore we aimed at the development of headlight system, focused on the implementation of an artificial vehicle, of more advanced convenience and safety for drivers.

Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator for Functional Safety Requirement (기능 안전성을 위한 대칭형 각도센서 보상기에 기반한 안전한 적응형 전조등 제어기의 설계)

  • Youn, Jiae;Yin, Meng Di;An, Junghyun;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.297-305
    • /
    • 2015
  • AFLS (Adaptive front lighting System) is being applied to improve safety in driving automotive at night. Safe embedded system for controlling head-lamp has to be tightly designed by considering safety requirement of hardware-dependent software, which is embedded in automotive ECU(Electronic Control Unit) hardware under severe environmental noise. In this paper, we propose an adaptive headlight controller with newly-designed symmetric angle sensor compensator, which is integrated with ECU-based adaptive front light system. The proposed system, on which additional backup hardware and emergency control algorithm are integrated, effectively detects abnormal situation and restore safe status of controlling the light-angle in AFLS operations by comparing result in symmetric angle sensor. The controlled angle value is traced into internal memory in runtime and will be continuously compared with the pre-defined lookup table (LUT) with symmetric angle value, which is used in normal operation. The watch-dog concept, which is based on using angle sensor and control-value tracer, enables quick response to restore safe light-controlling state by performing the backup sequence in emergency situation.

Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator Using Steering-swivel Angle Lookup Table (조향각-회전각 룩업테이블을 이용한 대칭형 각도센서 보상기를 가지는 안전한 적응형 전조등 제어기의 설계)

  • Youn, Jiae;An, Joonghyun;Yin, Meng Di;Cho, Jeonghun;Park, Daejin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.112-121
    • /
    • 2016
  • AFLS (Adaptive front lighting system) is being applied to improve safety in driving automotive at night. Safe embedded system design for controlling head-lamps is required to improve noise robust ECU hardware and software simultaneously by considering safety requirement of hardware-dependent software under severe environmental noise. In this paper, we propose an adaptive headlight controller with a newly-designed symmetric angle sensor compensator, especially based on the proposed steering-swivel angle lookup table to determine whether the current controlling target is safe. The proposed system includes an additional backup hardware to compare the system status and provides safe swivel-angle management using a controlling algorithm based on the pre-defined lookup table (LUT), which is a symmetric mapping relationship between the requested steering angle and expected swivel angle target. The implemented system model shows that the proposed architecture effectively detects abnormal situations and restores safe status of controlling the light-angle in AFLS operations under severe noisy environment.

Smart Headlamp Optics Design with Multi-array LEDs (멀티 어레이 엘이디를 이용한 지능형 전조등 광학 설계)

  • Yu, Jin Hee;Ro, Suk Ju;Lee, Jun Ho;Hwang, Chang Kook;Go, Dong Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.231-236
    • /
    • 2013
  • We investigated the optical design of a smart headlamp capable of producing various beam patterns through only on/off modulation of light sources. This was implemented by forming a continuous matrix of beams from discontinuous beam patterns by means of a multi-array LED optical system. As one such optical system, the multi-array LED system is a convenient and economical device for implementing beam patterns with the simple on/off modulation of the light sources. A single optical assembly module can be made by combining a multiple-LED array, optical system module, and electronic control with no need for any additional mechanical components. The present optical system was designed to include a secondary lens and a projection lens mounted at the front of each LED in the array to realize accurate lighting patterns as well as the required luminosity at a distance of 25 m in the forward direction. Finally, we identified and analyzed the patterns implemented by the designed optical system that produced satisfactory performance of high beams and adaptive driving beams (ADB).

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.