• 제목/요약/키워드: Adaptive finite element method

검색결과 171건 처리시간 0.023초

Mesh Simplification and Adaptive LOD for Finite Element Mesh Generation

  • Date, Hiroaki;Kanai, Satoshi;Kishinami, Takeshi;Nishigaki, Ichiro
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 2006
  • In this paper, we propose a new triangular finite element mesh generation method based on simplification of high-density mesh and adaptive Level-of-Detail (LOD) methods for efficient CAE. In our method, mesh simplification is used to control the mesh properties required for FE mesh, such as the number of triangular elements, element shape quality and size while keeping the specified approximation tolerance. Adaptive LOD methods based on vertex hierarchy according to curvature and region of interest, and global LOD method preserving density distributions are also proposed in order to construct a mesh more appropriate for CAE purpose. These methods enable efficient generation of FE meshes with properties appropriate for analysis purpose from a high-density mesh. Finally, the effectiveness of our approach is shown through evaluations of the FE meshes for practical use.

An edge-based smoothed finite element method for adaptive analysis

  • Chen, L.;Zhang, J.;Zeng, K.Y.;Jiao, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.767-793
    • /
    • 2011
  • An efficient edge-based smoothed finite element method (ES-FEM) has been recently developed for solving solid mechanics problems. The ES-FEM uses triangular elements that can be generated easily for complicated domains. In this paper, the complexity study of the ES-FEM based on triangular elements is conducted in detail, which confirms the ES-FEM produces higher computational efficiency compared to the FEM. Therefore, the ES-FEM offers an excellent platform for adaptive analysis, and this paper presents an efficient adaptive procedure based on the ES-FEM. A smoothing domain based energy (SDE) error estimate is first devised making use of the features of the ES-FEM. The present error estimate differs from the conventional approaches and evaluates error based on smoothing domains used in the ES-FEM. A local refinement technique based on the Delaunay algorithm is then implemented to achieve high efficiency in the mesh refinement. In this refinement technique, each node is assigned a scaling factor to control the local nodal density, and refinement of the neighborhood of a node is accomplished simply by adjusting its scaling factor. Intensive numerical studies, including an actual engineering problem of an automobile part, show that the proposed adaptive procedure is effective and efficient in producing solutions of desired accuracy.

정자력 계산을 위한 적응 유한 요소법 (An Adaptive Finite Element Method for Magnetostatic Force Computations)

  • 박용규;박일한;정형석;정현교;이기식;한송엽
    • 대한전기학회논문지
    • /
    • 제38권2호
    • /
    • pp.100-105
    • /
    • 1989
  • This paper presents an adaptive finite element method for magnetostatic force computation using Maxwell's stress tensor. Mesh refinements are performed automatically by interelement magnetic field intensity discontinuity errors and element force errors. In initial mesh, the computed forces for different integration paths give great differences, but converge to a certain value as mesh division is performed by the adaptive scheme, We obtained good agreement between analytic solutions and numerical values in typical examples.

  • PDF

정전자장의 적응유한요소해석을 위한 오차추정 (Posteriori Error Estimates for Adaptive Finite Element Analysis of Electro and Magnetostatic Fields)

  • 김형석;최홍순;한송엽
    • 대한전기학회논문지
    • /
    • 제38권1호
    • /
    • pp.22-28
    • /
    • 1989
  • This paper describes error estimate mothod for adaptive finite element analysis of two dimensional electrostatic and magnetostatic field problems. To estimate the local errors, divergence theorem is used for electrostatic field and Ampere's circuital law for magnetostatic field. To confirm the effectiveness of the proposed error estimators, adaptive finite element computations are performed using the proposed error estimators. The rates of convergence of global errors are comparable with those of existing adaptive finite element schemes which make use of field continuity conditions between element boundaries. This algorithm of error estimate can be easily implemented because of its simplicity. Especially, when the value of charge in electrostatic field and the value of current in magnetostatic field are to be figured out, this method is considerded to be preferable to other approaches.

  • PDF

Adaptive Finite Element Mesh Generation Schemes for Dynamic Structural Analyses

  • Yoon, Chong-Yul
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.23-28
    • /
    • 2010
  • 구조물의 방재를 위해서 구조물의 효율적인 유지관리는 필수적이며, 여기서 신뢰 있는 구조물의 동적해석은 중요한 역할을 한다. 유한요소법은 구조해석법으로 가장 많이 사용되는 방법으로 자리 잡고 있으며, 요소와 요소망이 제대로 선택되면 신뢰 있는 해석 결과를 출력한다. 시간 영역 동적해석에 유한요소법을 사용하려면 각 시간 단계에서 요소망을 재형성할 필요가 생길 수 있는데, 여기에 연산 시간 측면에서 효율적인 적응적 요소망 전략을 사용하면 편리하다. 본 연구는 시간영역 동적해석에서 전단계 해석 결과를 사용하여 계산된 대표 변형률 값을 오차 평가하는데 사용하고, 요소 세분화는 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 효율적으로 계산하는 적응적 요소망 형성 전략을 제시한다. 적용한 캔틸레버보의 예제를 통하여 정확성과 연산 효율성을 검증하였고 나아가 방법의 간단함이 지진 하중, 풍하중 등에 의한 복잡한 구조 동적 해석에도 효율적으로 사용될 수 있는 것을 보여 준다.

동적 문제에 효율적인 적응적 유한요소망 (Efficient Adaptive Finite Element Mesh Generation for Dynamics)

  • 윤종열
    • 한국전산구조공학회논문집
    • /
    • 제26권5호
    • /
    • pp.385-392
    • /
    • 2013
  • 유한요소법은 구조해석법으로 가장 많이 사용되는 방법으로 자리잡고 있으며, 근래에는 다소 복잡한 동적 및 비선형 문제에도 사용이 일반화되고 있다. 이러한 거동 예측이 어려운 구조해석에도 구조물을 적절한 유한요소와 요소망으로 표현하면 신뢰있는 해석 결과를 얻을 수 있다. 구조물의 동적 또는 비선형 거동에는 예상하지 않은 부분에서 큰 변형이 일어날 수 있으며, 유한요소해석 과정에서 같은 요소망을 계속 사용하면 요소의 모양이 신뢰 범위 밖으로 변형될 수 있으므로 요소망 역시 동적으로 적응할 필요가 있다. 또한, 유한요소 프로그램의 사용자 요구 사항 중 하나가 실시간으로 빠르게 진행되는 것이므로 연산면에서 효율적이어야 한다. 본 연구는 시간영역 동적해석에서 전 단계 해석 결과를 사용하여 계산된 대표 변형률값을 오차 평가에 사용하여 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 요소 세분화를 진행하여 동적으로 적응하는 요소망 형성 과정을 기술한다. 해석 중 과대하게 변형되는 요소는 모양계수 개념으로 방지한다. 간단한 프레임의 동적 유한요소해석을 예제로 정확성과 연산 효율성을 보여준다. 본 연구에서 제시하는 적응적 유한요소망 형성 전략은 복잡한 동적 및 비선형 해석에 일반적으로 적용될 수 있다.

An efficient adaptive finite element method based on EBE-PCG iterative solver for LEFM analysis

  • Hearunyakij, Manat;Phongthanapanich, Sutthisak
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.353-361
    • /
    • 2022
  • Linear Elastic Fracture Mechanics (LEFM) has been developed by applying stress analysis to determine the stress intensity factor (SIF, K). The finite element method (FEM) is widely used as a standard tool for evaluating the SIF for various crack configurations. The prediction accuracy can be achieved by applying an adaptive Delaunay triangulation combined with a FEM. The solution can be solved using either direct or iterative solvers. This work adopts the element-by-element preconditioned conjugate gradient (EBE-PCG) iterative solver into an adaptive FEM to solve the solution to heal problem size constraints that exist when direct solution techniques are applied. It can avoid the formation of a global stiffness matrix of a finite element model. Several numerical experiments reveal that the present method is simple, fast, and efficient compared to conventional sparse direct solvers. The optimum convergence criterion for two-dimensional LEFM analysis is studied. In this paper, four sample problems of a two-edge cracked plate, a center cracked plate, a single-edge cracked plate, and a compact tension specimen is used to evaluate the accuracy of the prediction of the SIF values. Finally, the efficiency of the present iterative solver is summarized by comparing the computational time for all cases.

h-법에 의한 순응형 유한요소 재분할에 관한 연구 (A Study on Adaptive Mesh Generation for the Finite Element Method using h-Method)

  • 장창두;김병일
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.39-44
    • /
    • 1992
  • This paper proposes a method of h-type adaptive mesh generation for the finite element analysis of two dimensional elasticity problem. The error energy norm of a posteriori error estimation is difined based on the complementary energy of each element. Computer codes are developed and some examples are investigated. It is shown that the approach to the optimized mesh in this paper is effective and useful.

  • PDF

적응적 중요표본추출법에 의한 확률유한요소모형의 신뢰성분석 (Reliability Analysis of Stochastic Finite Element Model by the Adaptive Importance Sampling Technique)

  • 김상효;나경웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.351-358
    • /
    • 1999
  • The structural responses of underground structures are examined in probability by using the elasto-plastic stochastic finite element method in which the spatial distributions of material properties are assumed to be stochastic fields. In addition, the adaptive importance sampling method using the response surface technique is used to improve simulation efficiency. The method is found to provide appropriate information although the nonlinear Limit State involves a large number of basic random variables and the failure probability is small. The probability of plastic local failures around an excavated area is effectively evaluated and the reliability for the limit displacement of the ground is investigated. It is demonstrated that the adaptive importance sampling method can be very efficiently used to evaluate the reliability of a large scale stochastic finite element model, such as the underground structures located in the multi-layered ground.

  • PDF

An adaptive control of spatial-temporal discretization error in finite element analysis of dynamic problems

  • Choi, Chang-Koon;Chung, Heung-Jin
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.391-410
    • /
    • 1995
  • The application of adaptive finite element method to dynamic problems is investigated. Both the kinetic and strain energy errors induced by space and time discretization were estimated in a consistent manner and controlled by the simultaneous use of the adaptive mesh generation and the automatic time stepping. Also an optimal ratio of spatial discretization error to temporal discretization error was discussed. In this study it was found that the best performance can be obtained when the specified spatial and temporal discretization errors have the same value. Numerical examples are carried out to verify the performance of the procedure.