• Title/Summary/Keyword: Adaptive feed forward controller

Search Result 20, Processing Time 0.03 seconds

Adaptive Feed-forward Control with Reference Model for Position Controller (기준모델과 피드포워드 적응제어를 사용한 위치제어기)

  • 윤명하;최남열;이치환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.413-418
    • /
    • 2002
  • This paper proposed a feed-forward adaptive position controller that is robust for variable Inertia. The control system consists of PI Position controller, feed-forward and model reference adaptive control. A parameter g(t) of the feed-forward adaptive position controller is adapted by using both the reference model speed and position error. So it improves the transient response and reduces the settling time. And normalization function Is used to make linear adaptation time. The validity of the feed-forward adaptive controller is confirmed by simulation results.

Implementation of Thrust Ripple Reduction for a Permanent Magnet Linear Synchronous Motor Using an Adaptive Feed Forward Controller

  • Baratam, Arundhati;Karlapudy, Alice Mary;Munagala, Suryakalavathi
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.687-694
    • /
    • 2014
  • This paper focuses on the analysis and compensation of thrust ripples in permanent magnet linear synchronous motors (PMLSM). The main drawback in PMLSMs is the presence of thrust ripples, which are mainly due to the interaction between the permanent magnets and armature slotted core. These thrust ripples reduce the performance of the drive system in high precision applications especially at low speeds. This paper analyzes thrust ripples using the discrete wavelet transform. These undesired thrust ripples are compensated by using an adaptive feed forward controller. It is observed that this novel controller reduces about 65 percent of the thrust ripples. An extensive simulation is performed through MATLAB and it is validated through experimental results using a d-SPACE system with a DS1104 control board.

Design of robust stable hybrid controllers for active noise/vibration control (능동 소음 및 진동 제어에 사용되는 강인안정한 하이브리드 제어기의 설계)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.431-436
    • /
    • 2000
  • Adaptive feed forward control algorithms based largely upon LMS approach have developed in recent two decades, and they have been widely applied to practical sound and vibration control problems in the case of the reference signal is available. Feedforward control can be applied only when reference signals can be measured or regenerated, while feedback controllers are used to reduce; sound and vibration when reference signals are not available. In recent years, hybrid control schemes in which adaptive feed forward controllers are combined with feedback ones have been studied based on simulations and experiments. The results have shown that the hybrid control may have better control performances in convergence speed and steady state error than the single control schemes. Hybrid control has the advantages of improving stability and performance as well as the disturbance rejection property. However, little effort has been made to the analysis or interpretation of hybrid control systems. In this study, we discussed the feedback controller effects on the stability of feed forward control algorithm in the presence of uncertain error path and a simple example showed that a stable feedback controller could make the feedforward controller unstable. A design criterion of feedback controllers is proposed in order to guarantee the stability of feedforward algorithms in the presence of error paths with uncertainties.

  • PDF

Design of a Adaptive Controller of Industrial Robot with Eight Joint Based on Digital Signal Processor

  • Han, Sung-Hyun;Jung, Dong-Yean;Kim, Hong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.741-746
    • /
    • 2004
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

A Robust Adaptive Control of Robot Manipulator Based on TMS320C80

  • Han, Sung-Hyun;Jung, Dong-Yean;Shin, Heang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2540-2545
    • /
    • 2003
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Real time Adaptive control of the Manipulator (매니퓰레이터의 실시간 적응제어)

  • Chung, C.S.;Lee, S.C.;Na, C.D.;Koo, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.771-776
    • /
    • 1991
  • In this paper. an indirect adaptive controller for manipulator which is composed of two controller structure is considered. One is feedforward controller in which the dynamics equation solved and the other is feedback controller in which the output error compensated. This controller has a good performance, but the computation burden of the feed forward controller keep from real time control. At this point, we proposed the two time adaptive controller where the sampling time of the feedforward controller is quite longer than that of the feedback controller. By the computer simulation, this proposed two time adaptive controller shows good performance in the view of accuracy in spite of decreasing computational burden.

  • PDF

A Robust Adaptive Control of Dual Arm Robot with Eight-Joints Based on DSPs (DSPs 기반 8축 듀얼암 로봇의 견실적응제어)

  • Han, Sung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1220-1230
    • /
    • 2006
  • In this paper, we propose a flew technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

A Study on Kinematics Modeling and Motion Control Algorithm Development in Joint for Vertical Type Articulated Robot Arma (수직다관절형 아암의 운동학적 모델링 및 관절공간 모션제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Yang, Jun-Seok;Won, Jong-Beom;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2016
  • In this paper, we propose a new technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

Robust Adaptive Sliding Mode Control of Robot Manipulators Using a Model Reference Approach

  • Lee, Tae-Hwan;Bae, Jun-Kyung
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.36-44
    • /
    • 1998
  • In this paper, a robust adaptive sliding mode control algorithm for accurate trajectory tracking of robot manipulators is proposed, with unknown parameters being estimated on-line. The controller is designed based on a Lyapunov method, which consists of adaptive feed-forward compensation part and a discontinuous control part. It is shown that, in the presence of the uncertainty and the disturbances arising from the actuator or some other causes, the tracking errors is bound to converge to zero asymptotically. An illustrative example is given to demonstrate the results of the propose method.

  • PDF

Performance Enhancement of RMRAC Controller for Permanent Magnet Synchronous Motor using Disturbance Observer (외란관측기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응 제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • PMSM (Permanent Magnet Synchronous Motor) current control is a most inner loop of electromechanical driving systems and it plays a foundation role in the hierarchy's control loop of several mechanical machine systems. In this paper, a simple RMRAC control scheme for the PMSM is proposed in the synchronous frame. In the synchronous current model, the input signal is composed of as a calculated voltage by adaptive laws and system disturbances. The gains of feed-forward and feed-back controller are estimated by the proposed e-modification methods respectively, where the disturbances are assumed as filtered current tracking errors. After the estimation of the disturbances from the tracking errors, the corresponding voltage is fed forward to control input to compensate for the disturbances. The proposed method is robust to high frequency disturbances and has a fast dynamic response to time varying reference current trajectory. It also shows a good real-time performance duo to it's simplicity of control structure. Through the simulations considering several cases of external disturbances and experimental results, efficiency of the proposed method is verified

  • PDF