• Title/Summary/Keyword: Adaptive estimation

Search Result 1,424, Processing Time 0.045 seconds

High Performance Control of IPMSM using AIPI Controller (AIPI 제어기를 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.225-227
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

Speed Control of Induction Motor Using the Voltage Type Inverter with Speed Sensorless (속도검출기없는 전압형 Inverter에 의한 유도전동기 속도제어)

  • Seo Young-Soo;Lee Chun-Sang;Hwang Lak-Hoon;Kim Ju-Rae;Cho Moon-Tack
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.430-433
    • /
    • 2001
  • When the vector control, which does not need a speed signal from a mechanical speed sensor, it is possible to reduce the cost of the control equipment and to improve the control performance in many industrial application. This paper describes a rotor speed identification method of induction motor based on the theory of flux model reference adaptive system. The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the two model are introduced In perform accurate rotor speed estimation. The control system is composed of the PI controller for speed control and current controller using space voltage vector PWM technique. High speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor. Validity of the proposed control method is verified through simulation and experimental result.

  • PDF

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

HIPI Controller of IPMSM Drive using ALM-FNN Control (적응학습 퍼지뉴로 제어를 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.420-423
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

Fault Diagnosis Method Based on High Precision CRPF under Complex Noise Environment

  • Wang, Jinhua;Cao, Jie
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.530-540
    • /
    • 2020
  • In order to solve the problem of low tracking accuracy caused by complex noise in the fault diagnosis of complex nonlinear system, a fault diagnosis method of high precision cost reference particle filter (CRPF) is proposed. By optimizing the low confidence particles to replace the resampling process, this paper improved the problem of sample impoverishment caused by the sample updating based on risk and cost of CRPF algorithm. This paper attempts to improve the accuracy of state estimation from the essential level of obtaining samples. Then, we study the correlation between the current observation value and the prior state. By adjusting the density variance of state transitions adaptively, the adaptive ability of the algorithm to the complex noises can be enhanced, which is expected to improve the accuracy of fault state tracking. Through the simulation analysis of a fuel unit fault diagnosis, the results show that the accuracy of the algorithm has been improved obviously under the background of complex noise.

Regularization Parameter Selection for Total Variation Model Based on Local Spectral Response

  • Zheng, Yuhui;Ma, Kai;Yu, Qiqiong;Zhang, Jianwei;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1168-1182
    • /
    • 2017
  • In the past decades, various image regularization methods have been introduced. Among them, total variation model has drawn much attention for the reason of its low computational complexity and well-understood mathematical behavior. However, regularization parameter estimation of total variation model is still an open problem. To deal with this problem, a novel adaptive regularization parameter selection scheme is proposed in this paper, by means of using the local spectral response, which has the capability of locally selecting the regularization parameters in a content-aware way and therefore adaptively adjusting the weights between the two terms of the total variation model. Experiment results on simulated and real noisy image show the good performance of our proposed method, in visual improvement and peak signal to noise ratio value.

Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System (하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안)

  • Park, Seongyun;Kim, Jaeyoung;Kim, Jonghoon;Ryu, Joonhyoung;Cho, Inho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

Stagewise Weak Orthogonal Matching Pursuit Algorithm Based on Adaptive Weak Threshold and Arithmetic Mean

  • Zhao, Liquan;Ma, Ke
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1343-1358
    • /
    • 2020
  • In the stagewise arithmetic orthogonal matching pursuit algorithm, the weak threshold used in sparsity estimation is determined via maximum iterations. Different maximum iterations correspond to different thresholds and affect the performance of the algorithm. To solve this problem, we propose an improved variable weak threshold based on the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the residual error value to control the weak threshold. When the residual value decreases, the threshold value continuously increases, so that the atoms contained in the atomic set are closer to the real sparsity value, making it possible to improve the reconstruction accuracy. In addition, we improved the generalized Jaccard coefficient in order to replace the inner product method that is used in the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the covariance to replace the joint expectation for two variables based on the generalized Jaccard coefficient. The improved generalized Jaccard coefficient can be used to generate a more accurate calculation of the correlation between the measurement matrixes. In addition, the residual is more accurate, which can reduce the possibility of selecting the wrong atoms. We demonstrate using simulations that the proposed algorithm produces a better reconstruction result in the reconstruction of a one-dimensional signal and two-dimensional image signal.

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF

PRICE ESTIMATION VIA BAYESIAN FILTERING AND OPTIMAL BID-ASK PRICES FOR MARKET MAKERS

  • Hyungbin Park;Junsu Park
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.875-898
    • /
    • 2024
  • This study estimates the true price of an asset and finds the optimal bid/ask prices for market makers. We provide a novel state-space model based on the exponential Ornstein-Uhlenbeck volatility and the Heston models with Gaussian noise, where the traded price and volume are available, but the true price is not observable. An objective of this study is to use Bayesian filtering to estimate the posterior distribution of the true price, given the traded price and volume. Because the posterior density is intractable, we employ the guided particle filtering algorithm, with which adaptive rejection metropolis sampling is used to generate samples from the density function of an unknown distribution. Given a simulated sample path, the posterior expectation of the true price outperforms the traded price in estimating the true price in terms of both the mean absolute error and root-mean-square error metrics. Another objective is to determine the optimal bid/ask prices for a market maker. The profit-and-loss of the market maker is the difference between the true price and its bid/ask prices multiplied by the traded volume or bid/ask size of the market maker. The market maker maximizes the expected utility of the PnL under the posterior distribution. We numerically calculate the optimal bid/ask prices using the Monte Carlo method, finding that its spread widens as the market maker becomes more risk-averse, and the bid/ask size and the level of uncertainty increase.