• Title/Summary/Keyword: Adaptive equalizers

Search Result 48, Processing Time 0.022 seconds

Neural Networks for Adaptive Channel Equalizers (등화기로서의 신경회로망)

  • 최수용;홍대식
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.468-473
    • /
    • 1999
  • Neural networks for adaptive channel equalizers have been resorted to recently in digital communication systems. In this paper, the characteristics and the application areas and etc. for neural networks as adaptive channel equalizers are examined through simple examples.

  • PDF

Modification of the Reference Signal for Fast Convergence in LMS-based Adaptive Equalizers (LMS 기반 적응 등화기에서 빠른 수렴을 위한 기준신호 변형)

  • 이기헌;최진호;박래홍;송익호;박재혁;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.939-951
    • /
    • 1994
  • In adaptive equalizers based on least mean squares (LMS) algorithms, the convergence rate is determined by the convariance matrix of an input signal. When the eigenvalue spread of the convariance matrix is close to unity, the convergence rate is quite fast. In this paper, for fast convergence of LMS-based adaptive equalizers we propose a modified reference signal pertinent to the statistical channel. From the theoretical analysis and computer simulation, it is shown that the proposed modification method is quite effective for fast convergence of LMS-based adaptive equalizers.

  • PDF

Performance Analysis of Electrical MMSE Linear Equalizers in Optically Amplified OOK Systems

  • Park, Jang-Woo;Chung, Won-Zoo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.232-236
    • /
    • 2011
  • We analyze the linear equalizers used in optically amplified on-off-keyed (OOK) systems to combat chromatic dispersion (CD) and polarization mode dispersion (PMD), and we derive the mathematical minimum mean squared error (MMSE) performance of these equalizers. Currently, the MMSE linear equalizer for optical OOK systems is obtained by simulations using adaptive approaches such as least mean squared (LMS) or constant modulus algorithm (CMA), but no theoretical studies on the optimal solutions for these equalizers have been performed. We model the optical OOK systems as square-law nonlinear channels and compute the MMSE equalizer coefficients directly from the estimated optical channel, signal power, and optical noise variance. The accuracy of the calculated MMSE equalizer coefficients and MMSE performance has been verified by simulations using adaptive algorithms.

Blind MMSE Equalization of FIR/IIR Channels Using Oversampling and Multichannel Linear Prediction

  • Chen, Fangjiong;Kwong, Sam;Kok, Chi-Wah
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.162-172
    • /
    • 2009
  • A linear-prediction-based blind equalization algorithm for single-input single-output (SISO) finite impulse response/infinite impulse response (FIR/IIR) channels is proposed. The new algorithm is based on second-order statistics, and it does not require channel order estimation. By oversampling the channel output, the SISO channel model is converted to a special single-input multiple-output (SIMO) model. Two forward linear predictors with consecutive prediction delays are applied to the subchannel outputs of the SIMO model. It is demonstrated that the partial parameters of the SIMO model can be estimated from the difference between the prediction errors when the length of the predictors is sufficiently large. The sufficient filter length for achieving the optimal prediction is also derived. Based on the estimated parameters, both batch and adaptive minimum-mean-square-error equalizers are developed. The performance of the proposed equalizers is evaluated by computer simulations and compared with existing algorithms.

  • PDF

Performance Comparison of Acoustic Equalizers using Adaptive Algorithms in Shallow Water Condition (천해환경에서 적응 알고리즘을 이용한 음향 등화기의 성능 비교)

  • Chuai, Ming;Park, Kyu-Chil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2018
  • The acoustic communication channel in shallow underwater is typically shown as time-varying multipath fading channel characteristics. The received signal through channel transmission cause inter-symbol interference (ISI) owing to multiple components of different time delay and amplitude. To compensate for this, several techniques have been used, and one of them is acoustic equalizer. In this study, we used four equalizers - feed forward equalizer (FFE), decision directed equalizer (DDE), decision feedback equalizer (DFE) and combination DDE with DFE to compensate ISI. And we applied two adaptive algorithms to adjust coefficient of equalizers - normalized least mean square algorithm and recursive least square algorithm. As result, we found that it has a significant performance improvement over 6 dB on SNR in nonlinear equalizer. By combination of DFE and DDE has almost best performance in any case.

Neural equalizers on the digital magnetic recording channel (디지털 자기기록 장치에서의 신경망을 이용한 등화기 연구)

  • 조재희;이종화;강창언;홍대식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.164-175
    • /
    • 1996
  • In this thesis, to cope with severe intersymbol interference and nonlinear distotions of the digital magnetic recording channel a neural decision feedback equalizer (NDFE) and an adaptive neural equalizer (NE) are applied. The digital magnetic recording channels with various recording densities and different types of the nonlinear distortions are considered. The computer simulation shows that as the nonlinear distortion is increased, the neural equalizers (NdFE, NE) have advantages of approximately 2-4 dB in signal to noise ratio (SNR) over the onventional eualizers to reach sme bit error rate and, a sthe recording density is increased, 1~5 dB of SNR improvement are also gained. Especially the NdFE gives a superior performance over the other equalizers when there is a severe nonlinear distortion in the digital magnetic channel.

  • PDF

New Channel Equalizers for Mixed Phase Channel (혼합위상 특성을 고려한 새로운 채널 등화기)

  • 안경승;조주필;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1445-1452
    • /
    • 2000
  • In general, the communication channel can be modeled as inter-symbol interference(ISI) and additive white gaussian noise channel. Viterbi algorithm is optimum detector for transmitted data at transmitter, but it needs large computational complexity. For the sake of this problem, adaptive equalizers are employed for channel equalization which is not attractive for mixed phase channel. In this paper, we propose the effective new channel equalizer for mixed phase channel and show the better performance than previous equalizers.

  • PDF

A nonlinear adaptive equalizer with fast on-line adaptation (고속 온라인 적응기능을 갖는 비선형 적응등화기)

  • 오덕길;최진영;이충웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.11-18
    • /
    • 1995
  • This paper proposes a nonlinear adaptive equalizer which is based on fuzzy rules and fuzzy inference of several affine mapping for the received channel data. The proposed nolonlinear adaptive equalizers with the significantly lower computational complexity. Also it can be applied to the on-line adaptation environments owing to its fast convergence characteristics and the lower computational load. When using the decision feedback vectors, this equaalizer can be easily realized in the form of the DFE structure with out the requirement for the perfect channel knowledge as in the case of the fuzzy adaptive filter.

  • PDF

A Study on the Fast QR RLS Algorithm for Applications to Adaptive Signal Processing (적응 신호 처리에의 응용을 위한 고속 QR RLS 알고리즘의 연구)

  • 정지영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.38-41
    • /
    • 1991
  • RLS algorithms are required for applications to adaptive line enhancers, adaptive equalizers for voiceband telephone and HF modems, and wide-badn digital spectrum mobile raio in which their convergence time and tracking speed are significant. The fast QR RLS algorithm satisfies above the requirements. Its computational complexity is linearly proportional to the tap number of a filter, N and its performance remains numerically stable. From the result of simumulation, the fast QR RLS algorithm represented Cioffi is better than gradient based algorithm in its initial performance when being applied to an adaptive line enhancer for cancelling noise.

  • PDF

A design of adaptive equalizer using the transversal walsh filter and the optimal LMS algorithm (횡단형 월쉬필터와 최적 LMS 기법을 이용한 적응 등화기의 설계)

  • 김종부
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.1-8
    • /
    • 1996
  • This paper proposes a novel transversal filter and an optimal LMS algorithm, and show how these can be realized as an adaptive equalizer. The transversal filter consists of a walsh and block pulse functions. in the LMS algorithm with equalizers, the convergence factor is an improtant design parameter because it governs stability and convergence speed. The conventional adaptation techniques use a fixed time constant convergence factor by the trial and error method. In this paper, an optimal method in the choice of the convergence factor is proposed. The proposed algorithm is obtrained that is tailored for each filter tap and is updated at each iteration. The performance of the proposed algorithm is compared iwth those of the conventional TDL and DFT equalizers by computer simulations.

  • PDF