• 제목/요약/키워드: Adaptive Weight Functions

검색결과 31건 처리시간 0.032초

적응적 영역 가중치를 이용한 실시간 스테레오 비전 시스템 설계 (Design of a Realtime Stereo Vision System using Adaptive Support-weight)

  • 류동훈;박태근
    • 전자공학회논문지
    • /
    • 제50권11호
    • /
    • pp.90-98
    • /
    • 2013
  • 지역적 정합방법을 이용한 스테레오 시스템은 알고리즘의 특성상 하드웨어 설계가 용이하여 많이 사용되나 낮은 정합률로 인해 정확한 깊이 영상을 얻기 힘들기 때문에 많은 응용 분야에 사용하기에 제한이 있다. 본 논문에서 제안한 스테레오 시스템은 픽셀의 변화도(gradient)를 기반으로 한 적응적인 가중치 알고리즘을 이용하여 높은 정합 성능을 보이며 하드웨어로 설계하였을 때 실시간처리가 가능하다. 일반적으로 적응적인 가중치 윈도우를 적용할 경우 중간 결과를 재사용하기 불가능하지만 행, 열을 분리하여 처리함으로써 데이터를 재사용할 수 있고 따라서 처리성능이 개선되었다. 알고리즘에 필요한 지수 및 아크탄젠트 함수를 구현하기 위해 선형(PWL, piecewise linear) 및 계단(step) 함수 등으로 근사화한 뒤 에러를 분석하여 최선의 파라미터를 선택하였다. 제안한 구조는 실시간처리를 위하여 9개의 프로세서를 사용하여 병렬처리를 하였으며, 동부하이텍 0.18um 라이브러리로 합성하였을 경우 최대 동작주파수 350MHz(33 fps)와 424K 게이트의 하드웨어 복잡도를 나타내었다.

퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어 (Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems)

  • 황영호;이은욱;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발 (Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp)

  • 신민기;조장호;우현수;김기영
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

신경회로망을 이용한 이산 비선형 재형상 비행제어시스템 (Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks)

  • 신동호;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙 (Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique)

  • 신동호;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

Routing Algorithm with Adaptive Weight Function based on Possible Available Wavelength in Optical WDM Networks

  • Pavarangkoon, Praphan;Thipchaksurat, Sakchai;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1338-1341
    • /
    • 2004
  • In this paper, we have proposed a new approach of routing and wavelength assignment algorithms, called Possible Available Wavelength (PAW) algorithm. The weight of a link is used as the main factor for routing decision in PAW algorithm. The weight of a link is defined as a function of hop count and available wavelengths. This function includes a determination factor of the number of wavelengths that are being used currently and are supposed to be available after a certain time. The session requests from users will be routed on the links that has the greatest number of link weight by using Dijkstra's shortest path algorithm. This means that the selected lightpath will has the least hop count and the greatest number of possible available wavelengths. The impact of proposed link weight computing function on the blocking probability and link utilization is investigated by means of computer simulation and comparing with the traditional mechanism. The results show that the proposed PAW algorithm can achieve the better performance in terms of the blocking probability and link utilization.

  • PDF

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

기울기 벡터 계산법이 LMS 알고리즘을 이용한 적응 빔포밍에 미치는 영향 (Effect of Gradient Vector Calculation Method On Adaptive Beamforming using LMS Algorithm)

  • 채광철;조기량
    • 한국전자통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.535-544
    • /
    • 2023
  • 본 논문에서는 희망하는 빔포밍을 실현하기 위하여 LMS 알고리즘(반복법)을 이용하는 경우에 반복 계산과정에서 무게 분포를 조절하기 위한 기울기 벡터의 계산법(해석적인 방법, 중앙유한차분법)이 적응 빔포밍에 미치는 영향을 연구하였다. 이를 위하여 임의로 설정한 빔폭을 갖는 준이상 빔과 회전 빔, 그리고 멀티 빔을 예로 하여 검토하였다. 수치 실험은 적응 빔포밍 시스템에 임의의 초기치와 시행착오를 거쳐서 설정한 적절한 값의 스텝 파라미터를 두 계산법에 동일하게 적용하고, 기울기 벡터의 계산을 위한 두 가지 방법을 이용하여 적응성과 오차를 평가하는 목적 함수의 수렴 특성 등을 비교하였다.

학습을 이용한 퍼지 제어기의 구성 (A construction of fuzzy controller using learning)

  • 안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.484-489
    • /
    • 1992
  • The inference of fuzzy controller can be considered a mapping from the controller input to membership value. The membership value, a kind of weight, has a role to decide if the input is appropriate to the rule. The membership function is described by several values, which are decided by a learning method. The learning method is adopted from adaptive filtering theory. The simulation shows the proposed fuzzy controller can learn linear and nonlinear functions. the structure of the proposed fuzzy controller becomes a kind of neural network.

  • PDF

신경회로망을 이용한 헬리콥터 적응 비선형 제어 (Adaptive Nonlinear Control of Helicopter Using Neural Networks)

  • 박범진;홍창호;석진영
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.24-33
    • /
    • 2004
  • 본 논문에서는 광범위한 비선형 함수 근사 성질을 갖고 있는 온라인 적응 신경회로망을 이용하여 헬리콥터 비행 제어 시스템을 설계하였다. 기존의 시스템 모델링 오차를 보상하는 방식과는 달리, 시스템의 입출력 정보를 통해 피드백 선형화 기법에서 필요한 두 개의 비선형 함수를 신경회로망을 이용하여 대체하는 방법을 적용하였다. 두 개의 비선형 함수를 신경회로망으로 대체하여 구성된 폐회로 시스템의 추적 성능과 내부 안정성을 보장하기 위하여 신경회로망의 가중치 학습 방법을 리야프노프 함수를 이용하여 유도하였다. 그리고 헬리콥터 저속 비행 모드에 대한 수치 시뮬레이션 결과를 통해 신경회로망을 적용한 제어 시스템의 성능을 검증하였다.