• Title/Summary/Keyword: Adaptive Tracking

Search Result 911, Processing Time 0.042 seconds

Comparison on Track Formation Range between TWS and Adaptive Tracking Using Markov Chain Analysis in a Radar System (레이더에서의 Markov Chain 분석을 이용한 TWS 방식과 Adaptive Tracking 방식의 추적 형성 거리 비교)

  • Ahn, Chang-Soo;Roh, Ji-Eun;Jang, Sung-Hoon;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.574-580
    • /
    • 2013
  • Compared with the TWS(Track While Scan) tracking that uses scan-to-scan correlation at search illuminations for targets track, a phased array radar can use adaptive tracking which assigns additional track illuminations and the track formation range can be improved as a result. In this paper, an adaptive tracking, the search and track illuminations of a target are synchronized such that the extra illuminations are evenly distributed between the search illuminations, is proposed. Markov chain and track formation range for the proposed adaptive tracking are shown with them for the conventional TWS. The simulation result shows that the proposed adaptive tracking has improved track formation range by 27.6 % compared with the conventional TWS tracking under same track confirmation criterion.

A practical adaptive tracking filter for a maneuvering target (시선좌표계에서의 분리추적필터를 이용한 개선된 입력추정기법)

  • 성태경;황익호;이장규;이양원;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.424-429
    • /
    • 1992
  • A practical adaptive tracking filter for a maneuvering target is proposed in this paper by combining a modified input estimation technique with pseudo-residuals and a decoupled tracking filter in line-of-sight Cartesian coordinate system. Since the adaptive tracking filter has decoupled structure and computes maneuver input estimates for each axis separately, it requires much less computations compared with the coventional tracking filter with MIE technique without degrading performance. Also, since pseudo-measurement noises in line-of-sight Cartesian coordinate system are much less correlated compared with those of inertial Cartesian coordinate system, the proposed tracking filter produces less false alarms or miss detections to improve the performance.

  • PDF

Direct Adaptive Tracking Control For a Wheeled Mobile Robot (바퀴구동 이동로봇의 경로추적 직접적응제어)

  • Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.201-204
    • /
    • 2004
  • In this paper, a direct adaptive tracking controller based Lyapunov method is designed for a wheeled mobile robots. A wheeled mobile robots have three degrees of freedom and two control variables. Therefore, it is difficult to control a mobile robot using the general linear control. We introduce two kinds of Lyapunov function for the design of the controller and verify the controller. A mobile robots using the designed adaptive direct tracking controller is well-behaved and is easily implemented.

Adaptive Tracking, Disturbance Rejection and Power System Stabilizer (Adaptive Tracking and Disturbance Rejection에 의한 전력계통안정화장치)

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.84-86
    • /
    • 2005
  • Adaptive tracking, disturbance rejection and power system stabilizer. First, this paper deals with power system stabilization problem using asymptotic tracking of arbitrary smooth bounded reference output signals, with simultaneous rejection of disturbances generated by an unknown linear exosystem. Second, this paper presents a power system stabilizer(PSS) using nonlinear adaptive observer backstepping controller.

  • PDF

Effective Covariance Tracker based on Adaptive Foreground Segmentation in Tracking Window (적응적인 물체분리를 이용한 효과적인 공분산 추적기)

  • Lee, Jin-Wook;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.766-770
    • /
    • 2010
  • In this paper, we present an effective covariance tracking algorithm based on adaptive size changing of tracking window. Recent researches have advocated the use of a covariance matrix of object image features for tracking objects instead of the conventional histogram object models used in popular algorithms. But, according to the general covariance tracking algorithm, it can not deal with the scale changes of the moving objects. The scale of the moving object often changes in various tracking environment and the tracking window(or object kernel) has to be adapted accordingly. In addition, the covariance matrix of moving objects should be adaptively updated considering of the tracking window size. We provide a solution to this problem by segmenting the moving object from the background pixels of the tracking window. Therefore, we can improve the tracking performance of the covariance tracking method. Our several simulations prove the effectiveness of the proposed method.

A Study on The Adaptive Control of the Rotational Systems by Means of the Normal Model Tracking Method (규범모델 추종방식에 의한 회전계통의 적응속도제어에 관한 연구)

  • 하주식;송문현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.77-83
    • /
    • 1995
  • Recently, in the field of industrial servo-systems, several methods have been proposed for tracking the reference input fastly and finely without overshoot. These methods, however, are established under hypothesis that structure and parameters of the plant are known accurately and they are time invariant. In practice, it is difficult to obtain the values of plant's parameters accurately and usually plants change with time and operation conditions. In this paper a method to construct the nominal model tracking adaptive control system is proposed. The system is composed of the nomial model which produces a ideal response and the model tracking system with the fuzzy adaptive controller. If the actual plant is equal to the controlled object in the nominal model, the output of the plant is the same as that of the nominal model and the fuzzy adaptive controller becomes idle. However, when the plant changes, the fuzzy adaptive controller of the tracking system operates in order for the output of the plant to track the ideal response. Through the computer simulations under various conditions, it is confirmed that the proposed model tracking system is very effective.

  • PDF

POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

  • Mariappan, Vinayagam;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.

Fully Adaptive Feedforward Feedback Synchronized Tracking Control for Stewart Platform Systems

  • Zhao, Dongya;Li, Shaoyuan;Gao, Feng
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.689-701
    • /
    • 2008
  • In this paper, a fully adaptive feedforward feedback synchronized tracking control approach is developed for precision tracking control of 6 degree of freedom (6DOF) Stewart Platform. The proposed controller is designed in decentralized form for implementation simplicity. Interconnections among different subsystems and gravity effect are eliminated by the feedforward control action. Feedback control action guarantees the stability of the system. The gains of the proposed controller can be updated on line without requiring any prior knowledge of Stewart Platform manipulator. Thus the control approach is claimed to be fully adaptive. By employing cross-coupling error technology, the proposed approach can guarantee both of position error and synchronization error converge to zero asymptotically. Because the actuators work in synchronous manner, the tracking performances are improved. The corresponding stability analysis is also presented in this paper. Finally, simulation is demonstrated to verify the effectiveness of the proposed approach.

Direct Adaptive Control for Trajectory Tracking Control of a Pneumatic Cylinder (공기압 실린더의 궤적 추적 제어를 위한 직접 적응제어)

  • Lee, Su-Han;Jang, Chang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2926-2934
    • /
    • 2000
  • This study presents a direct adaptive controller which is derived by using Lyapunovs direct methods for trajectory tracking control of a pneumatic cylinder. The structure of the controller is very simple and computationally efficient because it does not use either the dynamic model or the parameter values of the pneumatic system. The bounded stability of the system is shown in the presence of the bounded unmodeled dynamics. The bounded size of tracking errors can be made arbitrarily small without giving andy influences on either input or output variables. The trajectory tracking performance and the stability of the control system is verified experimentally. The results of the experiments show that the proposed controller tracks the given trajectories, sine function and cycloidal function trajectories, more accurately than PD controller does, and it stabilizes the system and adaptive variables.

An attitude control of stabilizing system using indirect adaptive fuzzy control

  • Kim, Jae-Hoon;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1318-1326
    • /
    • 2014
  • The purpose of a tracking control system is to track a moving target and to find the exact information of the target. If the platform of the tracking control system is equipped on a moving vehicle such as a ship, the tracking control system will treat even the additional platform motion. In order to avoid the complexity comprising the tracking control system, a process to treat the platform motion, named stabilizing system, must be separated from the tracking control system. In this paper, a method to comprise an attitude control system for the platform stabilization is proposed using an adaptive fuzzy control which is applicable to the system with structural and parametric uncertainty. The suggested adaptive fuzzy control algorithm is the 2nd/1st-type indirect adaptive fuzzy control algorithm using the advantages of 1st-type and 2nd-type indirect adaptive fuzzy control algorithm. Several experiments using the implemented stabilizing system are executed for verifying the effectiveness of the suggested method.