• Title/Summary/Keyword: Adaptive Temporal Error Concealment

Search Result 12, Processing Time 0.028 seconds

A Temporal Error Concealment Technique Using Motion Adaptive Boundary Matching Algorithm

  • Kim Won Ki;Jeong Je Chang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.819-822
    • /
    • 2004
  • To transmit MPEG-2 video on an erroneous channel, a number of error control techniques He needed. Especially, error concealment techniques which can be implemented on receivers independent of transmitters are essential to obtain good video quality. In this paper, a motion adaptive boundary matching algorithm (MA-BMA) is presented for temporal error concealment. Before carrying out BMA, we perform error concealmmt by a motion vector prediction using neighboring motion vectors. If the candidate of error concealment is rot satisfied, search range and reliable boundary pixels are selected by the motion activity or motion vectors ane a damaged macroblock is concealed by applying the MA-BMA. This error concealment technique reduces the complexity and maintains PSNR gain of 0.3 0.7dB compared to the conventional BMA.

  • PDF

Temporal Error Concealment Using Boundary Region Feature and Adaptive Block Matching (경계 영역 특성과 적응적 블록 정합을 이용한 시간적 오류 은닉)

  • Bae, Tae-Wuk;Kim, Seung-Jin;Kim, Tae-Su;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we proposed an temporal error concealment (EC) using the proposed boundary matching method and the adaptive block matching method. The proposed boundary matching method improves the spatial correlation of the macroblocks (MBs) by reusing the pixels of the concealed MB to estimate a motion vector of a error MB. The adaptive block matching method inspects the horizontal edge and the vertical edge feature of a error MB surroundings, and it conceals the error MBs in reference to more stronger edge feature. This improves video quality by raising edge connection feature of the error MBs and the neighborhood MBs. In particular, we restore a lost MB as the unit of 8${\times}$16 block or 16${\times}$8 block by using edge feature from the surrounding macroblocks. Experimental results show that the proposed algorithm gives better results than the conventional algorithms from a subjective and an objective viewpoint.

  • PDF

A Temporal Error Concealment Technique Using The Adaptive Boundary Matching Algorithm (적응적 경계 정합을 이용한 시간적 에러 은닉 기법)

  • 김원기;이두수;정제창
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.683-691
    • /
    • 2004
  • To transmit MPEG-2 video on an errorneous channel, a number of error control techniques are needed. Especially, error concealment techniques which can be implemented on receivers independent of transmitters are essential to obtain good video quality. In this paper, prediction of motion vector and an adaptive boundary matching algorithm are presented for temporal error concealment. Before the complex BMA, we perform error concealment by a motion vector prediction using neighboring motion vectors. If the candidate of error concealment is not satisfied, search range and reliable boundary pixels are selected by the temporal activity or motion vectors and a damaged macroblock is concealed by applying an adaptive BMA. This error concealment technique reduces the complexity and maintains a PSNR gain of 0.3∼0.7㏈ compared to conventional BMA.

Adaptive Error Concealment Method Using Affine Transform in the Video Decoder (비디오 복호기에서의 어파인 변환을 이용한 적응적 에러은닉 기법)

  • Kim, Dong-Hyung;Kim, Seung-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.712-719
    • /
    • 2008
  • Temporal error concealment indicates the algorithm that restores the lost video data using temporal correlation between previous frame and current frame with lost data. It can be categorized into the methods of block-based and pixel-based concealment. The proposed method in this paper is for pixel-based temporal error concealment using affine transform. It outperforms especially when the object or background in lost block has geometric transform which can be modeled using affine transform, that is, rotation, magnification, reduction, etc. Furthermore, in order to maintain good performance even though one or more motion vector represents the motion of different objects, we defines a cost function. According to cost from the cost function, the proposed method adopts affine error concealment adaptively. Simulation results show that the proposed method yields better performance up to 1.9 dB than the method embedded in reference software of H.264/AVC.

Design and Implementation of Error Concealment Algorithm using Data Hiding and Adaptive Selection of Adjacent Motion Vectors (정보숨김과 주변 움직임 벡터의 적응적 선택에 의한 에러은닉 알고리즘의 설계 및 구현)

  • Lee, Hyun-Woo;Seong, Dong-Su;Lee, Keon-Bae
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.607-614
    • /
    • 2006
  • In this paper, we propose an error resilience video coder which uses a hybrid error concealment algorithm. Firstly, the algorithm uses the error concealment with data hiding. If the hiding information is lost, the motion vector of lost macroblock is computed with adaptive selection of adjacent motion vectors and OBMC (Overlapped Block Motion Compensation) is applied with this motion vector. We know our algorithm is more effective in case of continuous GOB. The results show more significant improvement than many temporal concealment methods such as MVRI (Motion Vector Rational Interpolation) or existing error concealment using data hiding.

TEMPORAL ERROR CONCEALMENT ALGORITHM BASED ON ADAPTIVE SEACH RANGE AND MULTI-SIDE BOUNDARY INFORMATION FOR H.264/AVC

  • Kim, Myoung-Hoon;Jung, Soon-Hong;Kang, Beum-Joo;Sull, Sang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.273-277
    • /
    • 2009
  • A compressed video stream is very sensitive to transmission errors that may severely degrade the reconstructed image. Therefore, error resilience is an essential problem in video communications. In this paper, we propose novel temporal error concealment techniques for recovering lost or erroneously received macroblock (MB). To reduce the computational complexity, the proposed method adaptively determines the search range for each lost MB to find best matched block in the previous frame. And the original corrupted MB split into for $8{\times}8$ sub-MBs, and estimates motion vector (MV) of each sub-MB using its boundary information. Then the estimated MVs are utilized to reconstruct the damaged MB. In simulation results, the proposed method shows better performance than conventional methods in both aspects of PSNR.

  • PDF

Whole Frame Error Concealment with an Adaptive PU-based Motion Vector Extrapolation and Boundary Matching (적응적인 PU 기반 움직임 벡터 외삽과 경계 정합을 통한 프레임 전체 오류 은닉 방법에 관한 연구)

  • Kim, Seounghwi;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2015
  • Recently, most of the video services are usually transmitted in wireless networks. In networks environment, a packet of video is likely to be lost during transmission. For this reason, this paper proposes a new Error Concealment (EC) algorithm. For High Efficiency Video Coding (HEVC) bitstreams, the proposed algorithm includes Adaptive Prediction Unit-based Motion Vector Extrapolation (APMVE) and Boundary Matching (BM) algorithm, which employs both the temporal and spatial correlation. APMVE adaptively decides a Error Concealment Basic Unit (ECBU) by using the PU information of the previous frame and BM employing the spatial correlation is applied to only unreliable blocks. Simulation results show that the proposed algorithm provides the higher subjective quality by reducing blocking artifacts which appear in other existing algorithms.

An Efficient Error Concealment Algorithm using Adaptive Selection of Adjacent Motion Vectors (주변 움직임 벡터의 적응적 선택을 이용한 효율적인 에러은닉 알고리즘)

  • Lee Hyun-Woo;Seong Dong-Su
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.661-666
    • /
    • 2004
  • In the wireless communication systems, transmission errors degrade the reconstructed image quality severely. Error concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and internet. Among various techniques which can reduce the degradation of video quality, the error concealment techniques yield good performance without overheads and the modification of the encoder. In this paper, lost image blocks can be concealed with the OBMC(Overlapped Block Motion Compensation) after new motion vectors of the lost image blocks are allocated by median values using the adaptive selection with motion vectors of adjacent blocks. We know our algorithm is more effective in case of continuous GOB loss. The results show a significant improvement over the zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Median+OBMC by 3dB gain in PSNR.

A Temporal Error Concealment Algorithm with Adaptive Block Size in the H.264/AVC Standard (H.264에서의 시방향(時方向) 에러은닉 기법)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.49-58
    • /
    • 2005
  • For the improvement of coding efficiency, the H.264 standard uses new coding tools. Using these coding tools, H.264 has achieved significant improvements from rate-distortion point of view. The adoption of these tools enables a macroblock in H.264 to have more information, sixteen motion vectors, four reference frames and a macroblock mode. In this paper, we present an efficient temporal error concealment algorithm by using not only motion vectors and reference frames but also macroblock mode of neighbor macroblocks. Our algorithm conceals the macroblock error with variable sizes, $16{\times}16,\;16{\times}8,\;8{\times}16,\;8{\times}8$ depending on the macroblock modes of neighbor macroblocks. Simulation results show that the proposed method increase the objective quality regardless of bit-rate and block error rate.

A Temporal Error Concealment Method Based on Edge Adaptive Masking (에지정보에 적응적인 마스크를 이용한 시간방향 오류 은닉 방법)

  • Kim Yong-Woo;Lim Chan;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.91-98
    • /
    • 2005
  • In this paper, we propose a temporal error concealment method based on the edge adaptive masking. In the method, four regions around the corrupted block - top, bottom, left, and right - are defined and the edge features of the regions are extracted by applying an edge operator for each direction. The size of a mask for the boundary matching is determined by the edge information, which can be considered as a criterion to measure the activity of the boundary region. In other words, it is determined such that the size of the mask is proportional to the amount of edge-component extracted from each region in order to yield the higher reliability on boundary matching. This process is equivalent to applying weights depending on the edge features, which leads the improved motion vector. In experiments, it is verified that the proposed method outperforms the conventional methods in terms of image quality, and then its merits and demerits are discussed.